Roots & Zeros of Polynomials

Slides:



Advertisements
Similar presentations
The Rational Zero Theorem
Advertisements

Lesson 3.4 – Zeros of Polynomial Functions Rational Zero Theorem
In order to solve this equation, the first item to consider is: “How many solutions are there?” Let’s look at some equations and consider the number of.
2.5 complex 0’s & the fundamental theorem of algebra
Roots & Zeros of Polynomials I
Section 6.6 Finding Rational Zeros. Rational Zero Theorem Synthetic & Long Division Using Technology to Approximate Zeros Today you will look at finding.
Splash Screen.
Splash Screen.
Rational Root Theorem.
6.5 & 6.6 Theorems About Roots and the Fundamental Theorem of Algebra
6.2 – Simplified Form for Radicals
Unit 4 Roots and Zeros CCSS: A. APR.3
Zeros of Polynomial Functions
LIAL HORNSBY SCHNEIDER
Pre-Calculus For our Polynomial Function: The Factors are:(x + 5) & (x - 3) The Roots/Solutions are:x = -5 and 3 The Zeros are at:(-5, 0) and (3, 0)
Roots & Zeros of Polynomials II
Solving Polynomial Equations. Fundamental Theorem of Algebra Every polynomial equation of degree n has n roots!
Chapter 4 – Polynomials and Rational Functions
The Rational Zero Theorem
Lesson 2.5 The Fundamental Theorem of Algebra. For f(x) where n > 0, there is at least one zero in the complex number system Complex → real and imaginary.
The Fundamental Theorem of Algebra And Zeros of Polynomials
Sullivan Algebra and Trigonometry: Section 5.6 Complex Zeros; Fundamental Theorem of Algebra Objectives Utilize the Conjugate Pairs Theorem to Find the.
The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all.
Bell Ringer 1. What is the Rational Root Theorem (search your notebook…Unit 2). 2. What is the Fundamental Theorem of Algebra (search your notebook…Unit.
Academy Algebra II/Trig 5.5: The Real Zeros of a Polynomial Functions HW: p.387 (14, 27, 30, 31, 37, 38, 46, 51)
4-5, 4-6 Factor and Remainder Theorems r is an x intercept of the graph of the function If r is a real number that is a zero of a function then x = r.
Precalculus Complex Zeros V. J. Motto. Introduction We have already seen that an nth-degree polynomial can have at most n real zeros. In the complex number.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Real Zeros of a Polynomial Function Objectives: Solve Polynomial Equations. Apply Descartes Rule Find a polynomial Equation given the zeros.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Zeros of Polynomial Functions.
6.6 The Fundamental Theorem of Algebra
Ch 2.5: The Fundamental Theorem of Algebra
Lesson 2.5, page 312 Zeros of Polynomial Functions Objective: To find a polynomial with specified zeros, rational zeros, and other zeros, and to use Descartes’
Section 3.3 Theorems about Zeros of Polynomial Functions.
Introduction Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial.
The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all.
Zero of Polynomial Functions Factor Theorem Rational Zeros Theorem Number of Zeros Conjugate Zeros Theorem Finding Zeros of a Polynomial Function.
7.5 Roots and Zeros Objectives: The student will be able to…
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Roots & Zeros of Polynomials I
Roots & Zeros of Polynomials II Finding the Solutions (Roots/Zeros) of Polynomials: The Fundamental Theorem of Algebra The Complex Conjugate Theorem.
Warm Up  Divide the complex number 3 – 2i 1 + i  Multiply the complex number (3 -2i)(1+i)
Roots & Zeros of Polynomials I How the roots, solutions, zeros, x-intercepts and factors of a polynomial function are related.
Topic VII: Polynomial Functions Solving Polynomial Equations Roots and Zeros.
Algebra 2 List all the integer factors for the number below: 36.
Section 2.5 – Quadratic Equations
Fundamental Theorem of Algebra
Roots & Zeros of Polynomials I
Roots & Zeros of Polynomials part 1
Chapter 3: Polynomial Functions
Bell Ringer 1. What is the Rational Root Theorem
Zeros of Polynomial Functions
The Rational Zero Theorem
Finding Zeros of Polynomials
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Roots & Zeros of Polynomials I
Roots & Zeros of Polynomials I
Roots & Zeros of Polynomials I
The Fundamental Theorem of Algebra And Zeros of Polynomials
The Rational Zero Theorem
Warm-up: Find all real solutions of the equation X4 – 3x2 + 2 = 0
Rational Root Theorem.
Chapter 3: Polynomial Functions
3.3 Zeros of Polynomials.
Roots & Zeros of Polynomials I
Roots & Zeros of Polynomials II
Roots & Zeros of Polynomials I
Fundamental Thm. Of Algebra
6-8 Roots and Zeros Given a polynomial function f(x), the following are all equivalent: c is a zero of the polynomial function f(x). x – c is a factor.
Roots & Zeros of Polynomials I
Presentation transcript:

Roots & Zeros of Polynomials 2.5 Zeros of Polynomial Functions Roots & Zeros of Polynomials How the roots, solutions, zeros, x-intercepts and factors of a polynomial function are related.

Polynomials A Polynomial Expression can be a monomial or a sum of monomials. The Polynomial Expressions that we are discussing today are in terms of one variable. In a Polynomial Equation, two polynomials are set equal to each other.

Factoring Polynomials Terms are Factors of a Polynomial if, when they are multiplied, they equal that polynomial: (x - 3) and (x + 5) are Factors of the polynomial

Since Factors are a Product... …and the only way a product can equal zero is if one or more of the factors are zero… …then the only way the polynomial can equal zero is if one or more of the factors are zero.

Solving a Polynomial Equation Rearrange the terms to have zero on one side: Factor: Set each factor equal to zero and solve: The only way that x2 +2x - 15 can = 0 is if x = -5 or x = 3

Solutions/Roots a Polynomial Setting the Factors of a Polynomial Expression equal to zero gives the Solutions to the Equation when the polynomial expression equals zero. Another name for the Solutions of a Polynomial is the Roots of a Polynomial !

Zeros of a Polynomial Function A Polynomial Function is usually written in function notation or in terms of x and y. The Zeros of a Polynomial Function are the solutions to the equation you get when you set the polynomial equal to zero.

Zeros of a Polynomial Function The Zeros of a Polynomial Function ARE the Solutions to the Polynomial Equation when the polynomial equals zero.

Graph of a Polynomial Function Here is the graph of our polynomial function: The Zeros of the Polynomial are the values of x when the polynomial equals zero. In other words, the Zeros are the x-values where y equals zero.

x-Intercepts of a Polynomial The points where y = 0 are called the x-intercepts of the graph. The x-intercepts for our graph are the points... (-5, 0) and (3, 0)

x-Intercepts of a Polynomial When the Factors of a Polynomial Expression are set equal to zero, we get the Solutions or Roots of the Polynomial Equation. The Solutions/Roots of the Polynomial Equation are the x-coordinates for the x-Intercepts of the Polynomial Graph!

Factors, Roots, Zeros For our Polynomial Function: The Factors are: (x + 5) & (x - 3) The Roots/Solutions are: x = -5 and 3 The Zeros are at: (-5, 0) and (3, 0)

Roots & Zeros of Polynomials II Finding the Roots/Zeros of Polynomials: The Fundamental Theorem of Algebra Descartes’ Rule of Signs The Complex Conjugate Theorem

Fundamental Theorem Of Algebra Every Polynomial Equation with a degree higher than zero has at least one root in the set of Complex Numbers. A Polynomial Equation of the form P(x) = 0 of degree ‘n’ with complex coefficients has exactly ‘n’ Roots in the set of Complex Numbers. COROLLARY:

Real/Imaginary Roots If a polynomial has ‘n’ complex roots will its graph have ‘n’ x-intercepts? In this example, the degree n = 3, and if we factor the polynomial, the roots are x = -2, 0, 2. We can also see from the graph that there are 3 x-intercepts.

Real/Imaginary Roots Just because a polynomial has ‘n’ complex roots doesn’t mean that they are all Real! In this example, however, the degree is still n = 3, but there is only one Real x-intercept or root at x = -1, the other 2 roots must have imaginary components.

Descartes’ Rule of Signs Arrange the terms of the polynomial P(x) in descending degree: The number of times the coefficients of the terms of P(x) change sign = the number of Positive Real Roots (or less by any even number) The number of times the coefficients of the terms of P(-x) change sign = the number of Negative Real Roots (or less by any even number) In the examples that follow, use Descartes’ Rule of Signs to predict the number of + and - Real Roots!

Find Roots/Zeros of a Polynomial We can find the Roots or Zeros of a polynomial by setting the polynomial equal to 0 and factoring. Some are easier to factor than others! The roots are: 0, -2, 2

Find Roots/Zeros of a Polynomial If we cannot factor the polynomial, but know one of the roots, we can divide that factor into the polynomial. The resulting polynomial has a lower degree and might be easier to factor or solve with the quadratic formula. (x - 5) is a factor We can solve the resulting polynomial to get the other 2 roots:

Complex Conjugates Theorem Roots/Zeros that are not Real are Complex with an Imaginary component. Complex roots with Imaginary components always exist in Conjugate Pairs. If a + bi (b ≠ 0) is a zero of a polynomial function, then its Conjugate, a - bi, is also a zero of the function.

Find Roots/Zeros of a Polynomial If the known root is imaginary, we can use the Complex Conjugates Theorem. Ex: Find all the roots of If one root is 4 - i. Because of the Complex Conjugate Theorem, we know that another root must be 4 + i. Can the third root also be imaginary? Consider… Descartes: # of Pos. Real Roots = 2 or 0 Descartes: # of Neg. Real Roots = 1

Example (con’t) Ex: Find all the roots of If one root is 4 - i. If one root is 4 - i, then one factor is [x - (4 - i)], and Another root is 4 + i, & another factor is [x - (4 + i)]. Multiply these factors:

Example (con’t) Ex: Find all the roots of If one root is 4 - i. If the product of the two non-real factors is then the third factor (that gives us the neg. real root) is the quotient of P(x) divided by : The third root is x = -3

Finding Roots/Zeros of Polynomials We use the Fundamental Thm. Of Algebra, Descartes’ Rule of Signs and the Complex Conjugate Thm. to predict the nature of the roots of a polynomial. We use skills such as factoring, polynomial division and the quadratic formula to find the zeros/roots of polynomials. In future lessons you will learn other rules and theorems to predict the values of roots so you can solve higher degree polynomials!

The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all possible rational roots of a polynomial equation. Not every number in the list will be a zero of the function, but every rational zero of the polynomial function will appear somewhere in the list. The Rational Zero Theorem If f (x) = anxn + an-1xn-1 +…+ a1x + a0 has integer coefficients and (where is reduced) is a rational zero, then p is a factor of the constant term a0 and q is a factor of the leading coefficient an.

EXAMPLE: Using the Rational Zero Theorem List all possible rational zeros of f (x) = 15x3 + 14x2 - 3x – 2. Solution The constant term is –2 and the leading coefficient is 15. Divide 1 and 2 by 1. Divide 1 and 2 by 3. Divide 1 and 2 by 5. Divide 1 and 2 by 15. There are 16 possible rational zeros. The actual solution set to f (x) = 15x3 + 14x2 - 3x – 2 = 0 is {-1, -1/3, 2/5}, which contains 3 of the 16 possible solutions.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Because we are given an equation, we will use the word "roots," rather than "zeros," in the solution process. We begin by listing all possible rational roots.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution The graph of f (x) = x4 - 6x2 - 8x + 24 is shown the figure below. Because the x-intercept is 2, we will test 2 by synthetic division and show that it is a root of the given equation. x-intercept: 2 2 0 -6 -8 24 2 4 -4 -24 1 2 -2 -12 0 The zero remainder indicates that 2 is a root of x4 - 6x2 - 8x + 24 = 0.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Now we can rewrite the given equation in factored form. x4 - 6x2 + 8x + 24 = 0 This is the given equation. (x – 2)(x3 + 2x2 - 2x - 12) = 0 This is the result obtained from the synthetic division. x – 2 = 0 or x3 + 2x2 - 2x - 12 = 0 Set each factor equal to zero. Now we must continue by factoring x3 + 2x2 - 2x - 12 = 0

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Because the graph turns around at 2, this means that 2 is a root of even multiplicity. Thus, 2 must also be a root of x3 + 2x2 - 2x - 12 = 0. 1 2 -2 -12 2 8 12 1 4 6 0 These are the coefficients of x3 + 2x2 - 2x - 12 = 0. The zero remainder indicates that 2 is a root of x3 + 2x2 - 2x - 12 = 0. x-intercept: 2

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution Now we can solve the original equation as follows. x4 - 6x2 + 8x + 24 = 0 This is the given equation. (x – 2)(x3 + 2x2 - 2x - 12) = 0 This was obtained from the first synthetic division. (x – 2)(x – 2)(x2 + 4x + 6) = 0 This was obtained from the second synthetic division. x – 2 = 0 or x – 2 = 0 or x2 + 4x + 6 = 0 Set each factor equal to zero. x = 2 x = 2 x2 + 4x + 6 = 0 Solve.

EXAMPLE: Solving a Polynomial Equation Solve: x4 - 6x2 - 8x + 24 = 0. Solution We can use the quadratic formula to solve x2 + 4x + 6 = 0. We use the quadratic formula because x2 + 4x + 6 = 0 cannot be factored. Let a = 1, b = 4, and c = 6. Multiply and subtract under the radical. Simplify. The solution set of the original equation is {2, -2 - i -2 + i }.