CALCULUS 1 – Algebra review Intervals and Interval Notation.

Slides:



Advertisements
Similar presentations
Special Equations - Absolute Value and Interval Notation
Advertisements

Do Now: Solve, graph, and write your answer in interval notation.
Splash Screen Inequalities Involving Absolute Values Lesson5-5.
Solving Linear Inequalities
© 2002 by Shawna Haider. There are two kinds of notation for graphs of inequalities: open/filled-in circle notation and interval notation brackets. 64.
Appendix B.4 Solving Inequalities Algebraically And Graphically.
Absolute Value Inequalities Steps: 1.Get absolute value alone 2.Write two inequalities 3.Solve for the variable 4.Graph the solution set and write in proper.
Solve an absolute value inequality
Table of Contents First, isolate the absolute value bar expression. Linear Absolute Value Inequality: Solving Algebraically Example 1: Solve Next, examine.
9.4 – Solving Absolute Value Equations and Inequalities 1.
3-6 Compound Inequalities
EXAMPLE 1 Solve absolute value inequalities
2.4 – Linear Inequalities in One Variable
Bell Work: Simplify Answer: -1/36 Lesson 37: Inequalities, Greater Than and Less Than, Graphical Solutions of Inequalities.
Solving Inequalities We can solve inequalities just like equations, with the following exception: Multiplication or division of an inequality by a negative.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Inequalities What are the meanings of these symbols?
Absolute Value Equalities and Inequalities Absolute value: The distance from zero on the number line. Example: The absolute value of 7, written as |7|,
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
Substitute 0 for y. Write original equation. To find the x- intercept, substitute 0 for y and solve for x. SOLUTION Find the x- intercept and the y- intercept.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 2-1 Equations and Inequalities Chapter 2.
§ 2.8 Solving Linear Inequalities. Martin-Gay, Beginning and Intermediate Algebra, 4ed 22 Linear Inequalities in One Variable A linear inequality in one.
Objectives: To solve and graph simple and compound inequalities.
Warm-Up Solve the linear inequality. 1. 2(x+4) > x x+7 ≤ 4x – 2 Homework: WS 1.7B Pg. 175 (63-85 odds) Answers: 1. x > x > 1.
Copyright 2013, 2009, 2005, 2002 Pearson, Education, Inc.
Solving Inequalities: Review of Unit 12 Created by: Amanda Hollenbacher 1/30/2005.
Solving Absolute Value Equations and Inequalities.
3.6 Solving Absolute Value Equations and Inequalities
Review #1. SOLVING LINEAR EQUATIONS, INEQUALITIES AND ABSOLUTE VALUES  Multi-Step Equations  Solve each equation. Check your solution.  1) 4x – 12.
Warm-up – pick up handout up front Solve by factoring. 1000x 3 -10x Answers: 1.x=0, x=1/10, x= -1/10 HW 1.7A (2-14 evens, 21-24, ) Solve.
6.4 Solving Absolute Value Equations and Inequalities
SOLVE ABSOLUTE VALUE INEQUALITIES January 21, 2014 Pages
Warm Up Write as an inequality and interval notation.
Copyright 2013, 2009, 2005, 2002 Pearson, Education, Inc.
Section 2.5 Solving Linear Inequalities
9.3 – Linear Equation and Inequalities 1. Linear Equations 2.
Solve an inequality using multiplication EXAMPLE 2 < 7< 7 x –6 Write original inequality. Multiply each side by –6. Reverse inequality symbol. x > –42.
Extra Practice 2.5 COMPOUND INEQUALITIES Use lined paper or continue Cornell notes 22 < −3c + 4 < 14 − 4 − 4 − 4 18 < −3c < 10 ____ ____ ____
Martin-Gay, Beginning Algebra, 5ed Add 10 to both sides Subtract 5 from both sides Multiple both sides by 2 Multiple both sides by  2 Divide both.
Intro to Inequalities Unit 4 Section 4.1. Definition A statement that a mathematical expression is greater than or less than another expression.
Inequalities.
Graphing Linear Inequalities 6.1 & & 6.2 Students will be able to graph linear inequalities with one variable. Check whether the given number.
Review #2 Algebra Review. A real number that corresponds to a particular point on the number line is called a coordinate. The origin corresponds to the.
1.8 Solving Absolute Value Equations and Inequalities Objectives: Write, solve, and graph absolute value equations and inequalities in mathematical and.
Solving Inequalities Objective: SWBAT solve inequalities and represent solutions to inequalities graphically while using set notation. Advanced Algebra.
Inequality Notation.
4-5 Inequalities (pages ) P6  Represent inequalities on a number line or a coordinate plane.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
> greater than or equal
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Solving and Graphing Absolute Value Inequalities
Absolute Value Equations and Inequalities
Graphing Inequalities
Quadratic Inequalities
Equations and Inequalities involving Absolute Value
2.6 Solving Absolute-Value Inequalities
Absolute Value Inequalities
Solving Linear Equations
Solving absolute value equations
6.1 to 6.3 Solving Linear Inequalities
1.5 Linear Inequalities.
Equations and Inequalities
3-6 Compound Inequalities
Objectives: Graph (and write) inequalities on a number line.
Solve an inequality using subtraction
Solving Linear Inequalities
Name ________________________________________________
Choose a number greater than 8, substitute for y and solve:
Presentation transcript:

CALCULUS 1 – Algebra review Intervals and Interval Notation

CALCULUS 1 – Algebra review Intervals and Interval Notation Intervals are sets of real numbers. The notation uses square and round brackets to show these sets of numbers.

CALCULUS 1 – Algebra review Intervals and Interval Notation Intervals are sets of real numbers. The notation uses square and round brackets to show these sets of numbers. Round bracket – go up to but do not include this number in the set

CALCULUS 1 – Algebra review Intervals and Interval Notation Intervals are sets of real numbers. The notation uses square and round brackets to show these sets of numbers. ( 3, 7 )- this interval would include all numbers between 3 and 7, but NOT 3 or 7. Round bracket – go up to but do not include this number in the set

CALCULUS 1 – Algebra review Intervals and Interval Notation Intervals are sets of real numbers. The notation uses square and round brackets to show these sets of numbers. Square bracket – include this number in the set ( 3, 7 )- this interval would include all numbers between 3 and 7, but NOT 3 or 7. Round bracket – go up to but do not include this number in the set

CALCULUS 1 – Algebra review Intervals and Interval Notation Intervals are sets of real numbers. The notation uses square and round brackets to show these sets of numbers. Square bracket – include this number in the set ( 3, 7 )- this interval would include all numbers between 3 and 7, but NOT 3 or 7. Round bracket – go up to but do not include this number in the set [ 3, 7 ]- this interval would include all numbers from 3 to 7..

CALCULUS 1 – Algebra review Intervals and Interval Notation When working with equations containing an inequality, the symbols for the inequality determine how you graph and represent the solution as an interval. Round bracket - less than ( )

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) - open circle on a graph When working with equations containing an inequality, the symbols for the inequality determine how you graph and represent the solution as an interval.

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket – less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph When working with equations containing an inequality, the symbols for the inequality determine how you graph and represent the solution as an interval.

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph When working with equations containing an inequality, the symbols for the inequality determine how you graph and represent the solution as an interval. - closed circle on a graph

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE : Solve and graph and show your answer as an interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE : Solve and graph and show your answer as an interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE : Solve and graph and show your answer as an interval 4 graph

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE : Solve and graph and show your answer as an interval 4 graph interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval This results in two graphs… x < 3 x ≥

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval The solution set is where the two graphs overlap ( share ) 3- 1

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval The solution set is where the two graphs overlap ( share ) 3- 1 [ -1, 3 ) interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 3 : Solve and graph and show your answer as an interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval These are our critical points

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval These are our critical points Graph the critical points and then use a test point to find “true/false”

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval These are our critical points Graph the critical points and then use a test point to find “true/false” TEST x = 0 0 TRUEFALSE TRUE

CALCULUS 1 – Algebra review Intervals and Interval Notation Round bracket - less than ( ) Square bracket - less than or equal to ( ≤ ), greater than or equal to ( ≥ ) - open circle on a graph - closed circle on a graph EXAMPLE # 2 : Solve and graph and show your answer as an interval These are our critical points Graph the critical points and then use a test point to find “true/false” TEST x = 0 0 TRUEFALSE TRUE interval

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart.

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 1 : Solve

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 1 : Solve

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 2 : Solve

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 2 : Solve Remember u substitution from pre-calc ?

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 2 : Solve Remember u substitution from pre-calc ?

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 2 : Solve Remember u substitution from pre-calc ? Can’t have an absolute value equal to a negative answer

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 2 : Solve Remember u substitution from pre-calc ? Now solve the absolute value equation …

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 3 : Solve, and show the solution set as an interval.

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 3 : Solve, and show the solution set as an interval.

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 3 : Solve, and show the solution set as an interval. I like to graph the solution to determine the interval… 4

CALCULUS 1 – Algebra review Absolute Value Equations Remember, absolute value equations have two possible answers; positive and negative. So when solving, drop the absolute value sign, and set the equation equal to the original answer, and also it’s negative counterpart. EXAMPLE # 3 : Solve, and show the solution set as an interval. I like to graph the solution to determine the interval… 4 interval