SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.

Slides:



Advertisements
Similar presentations
Absorption and generation of light with silicon nanocrystals in SiO 2 Amsterdam Master of Physics Symposium 2008 Dolf Timmerman Van der Waals-Zeeman Institute.
Advertisements

Nanophotonics Class 2 Surface plasmon polaritons.
Godefroy Leménager 1, F Pisanello 1,2, L Martiradonna 3, P Spinicelli 1, A Fiore 2, J-P Hermier 4, L Manna 5, R Cingolani 2,3, E Giacobino 1, M De Vittorio.
Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
Big Question: We can see rafts in Model Membranes (GUVs or Supported Lipid Bilayers, LM), but how to study in cells? Do rafts really exist in cells? Are.
Photoelectrochemistry (ch. 18)
Unidirectional and Wavelength Selective Photonic Sphere-Array Nanoantennas Slide 1 The 33 rd Progress In Electromagnetics Research Symposium March, 25-28,
Quantum Dot Bioconjugates for Imaging, Labelling and Sensing By: Igor L. Medintz, H. Tetsuo Uyeda, Ellen R. Goldman, and Hedi Mattoussi Nature Materials,
Resonances and optical constants of dielectrics: basic light-matter interaction.
CEAC06, Zürich Achim Hartschuh, Nano-Optics München1 High-Resolution Near-Field Optical Spectroscopy of Carbon Nanotubes Achim Hartschuh, Huihong.
Beam manipulation via plasmonic structure Kwang Hee, Lee Photonic Systems Laboratory.
Surface-Enhanced Raman Scattering (SERS)
Third harmonic imaging of plasmonic nanoantennas
Optical properties of single CdSe/ZnS colloidal QDs on a glass cover slip and gold colloid surface C. T. Yuan, W. C. Chou, Y. N. Chen, D. S. Chuu.
Molecular Luminescence Spectrometry Chap 15. Three Related Optical Methods Fluorescence Phosphorescence Chemiluminescence } From excitation through absorption.
1 R. Bachelot H. Ibn-El-Ahrach 1, O. Soppera 2, A. Vial 1,A.-S. Grimault 1, G. Lérondel 1, J. Plain 1 and P. Royer 1 R. Bachelot, H. Ibn-El-Ahrach 1, O.
無機化學特論(四) 授課老師:林寬鋸 教授
Near-field thermal radiation
1 Surface Enhanced Fluorescence Ellane J. Park Turro Group Meeting July 15, 2008.
Jacob B Khurgin Johns Hopkins University, Baltimore Greg Sun
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Coupling of InGaN quantum-well photoluminescence to silver surface plasmons PRB, Vol 60, No 16, Pg Gontijo, M. Boroditsky, and E. Yablonovitch,UCLA.
Single Quantum Dot Optical Spectroscopy
Molecular Luminescence
Energy Transfer of Fluorescent CdSe/ZnS Quantum Dots and Gold Nanoparticles and Its Applications for Mercuric (II) Ion Detection By Ming Li and Nianqiang.
Quantum Dots: Confinement and Applications
Optical trapping of quantum dots in air and helium gas KAWAI Ryoichi Ashida Lab. 2013/10/30 M1 colloquium.
Illumination and Filters Foundations of Microscopy Series Amanda Combs Advanced Instrumentation and Physics.
Optical Properties of Metal Nanoparticles
Photochemistry And Photophysics Of Nanoparticles Brian Ellis.
Photophysical Properties of CdSe/ZnS Quantum Dots Embedded in Polymer Films and Solubilized in Toluene Final Presentation Jamie Golden CHEM /30/10.
Charge Carrier Related Nonlinearities
Nanophotonics Class 4 Density of states. Outline Spontaneous emission: an exited atom/molecule/.. decays to the ground state and emits a photon Emission.
Christopher Devulder, Slava V. Rotkin 1 Christopher Devulder, Slava V. Rotkin 1 1 Department of Physics, Lehigh University, Bethlehem, PA INTRODUCTION.
Engineering Spontaneous Emission in Hybrid Nanoscale Materials for Optoelectronics and Bio-photonics Arup Neogi Department of Physics and Materials Engineering.
6.772/SMA Compound Semiconductors Lecture 24 - Detectors -3; Modulators - Outline  Photoconductors Bulk photoconductors gain mechanism gain-speed.
The nanoparticle-plasmon resonance for proteomics Bongsu, Jung Jaehun, Seol Final Project, ME381R December 2,2004.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Materials World Network: Understanding & controlling optical excitations in individual hybrid nanostructures Gregory J. Salamo, University of Arkansas,
Fluorescence Spectroscopy
1 um We seek to understand the electrical and optical properties of single organic semiconducting molecules contacted on either end by metal electrodes.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Scanning excitation and emission spectra I Wavelength (nm) )Scan excitation with emission set at 380 nm -λ ex,max = 280 nm 2) Scan emission.
Chapter 2 Properties on the Nanoscale
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
Nanometric optical tweezers based on nanostructured substrates Miyasaka Lab. Hiroaki YAMAUCHI A. N. Grigorenko, N. W. Roberts, M. R. Dickinson & Y. Zhang.
Itoh Laboratory Masataka Yasuda
Optical Trapping of Quantum Dots Based on Gap-Mode-Excitation of Localized Surface Plasmon J. Phys. Chem. Lett. 1, (2010) Ashida Lab. Shinichiro.
Efficiency of thermal radiation energy-conversion nanodevices Miguel Rubi I. Latella A. Perez L. Lapas.
Quenching of Fluorescence and Broadband Emission in Yb 3+ :Y 2 O 3 and Yb 3+ :Lu 2 O 3 3rd Laser Ceramics Symposium : International Symposium on Transparent.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Nonlinear Optical Response of Nanocavities in Thin Metal Films Yehiam Prior Department of Chemical Physics Weizmann Institute of Science With Adi Salomon.
1.1 What’s electromagnetic radiation
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Optical Investigation of Gold Shell Enhanced 25 nm Diameter Upconverted Fluorescence Emission AUTHORS : KORY GREEN, JANINA WIRTH AND SHUANG FANG LIM -
Introduction to Laser Spectroscopic Techniques for Condensed Matter.
Surface-Enhanced Raman Scattering (SERS)
기계적 변형이 가능한 능동 플라즈모닉 기반 표면증강라만분광 기판 Optical Society of Korea Winter Annual Meting 강민희, 김재준, 오영재, 정기훈 바이오및뇌공학과, KAIST Stretchable Active-Plasmonic.
Aggregation-induced enhanced emission (AIEE) Myounghee Lee
Molecular Fluorescence Spectroscopy
Small internal electric fields in quaternary InAlGaN heterostructures S.P. Łepkowski 1, P. Lefebvre 2, S. Anceau 1,2, T. Suski 1, H. Teisseyre 1, H. Hirayama.
Plasmonic waveguide filters with nanodisk resonators
Really Basic Optics Instrument Sample Sample Prep Instrument Out put
Strong Coupling between Molecules and Plasmonic Nanostructures
Department of Physics, Fudan University
Today’s take-home lessons: FRET (i. e
Today’s take-home lessons: FRET (i. e
Presentation transcript:

SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT Troyes, Laboratoire de Nanotechnologie et d’Instrumentation Optique, France

Introduction : to plasmonics !. Surface Plasmon Polaritons on nanowaveguides : excitation, propagation, control and detection main issues : lateral confinement and propagation distance. Localized Surface Plasmons on metallic nanoparticles : coupling to quantum emitters main issues : enhancement and directivity of the emission (weak coupling)

Introduction Fluorescence lifetime modification of Eu ions in front of a silver mirror Drexhage K.H. progress in Optics (Wolf (E.) Near field versus far field coupling. Lifetime reduction is accompanied by photoluminescence quenching !

Introduction Fluorescence enhancement at the single molecule level Enhancement of 1000 A. Kinkhabwala et al, Nature Phot. 3, 654 (2009)

Introduction P. Pompa et al, Nature Nanotechnology 1, 128 (2006) J. H. Song et al, Nano Lett. 5 (8), 1557 (2005) Quantum Dots luminescence enhancement vs. quenching on metal nanostructures A systematic and parametric study is needed

S / S 0 = (η/η 0 ) (|p. E loc | 2 / |p· E 0 | 2 ) Introduction S 0 : fluorescence signal without the metallic nanoparticles S : fluorescence signal with the metallic nanoparticles E loc : local electric field can be enhanced through :. Localized Surface Plasmon (LSP) Resonance. lightning rod effect at sharp edges. nanogaps

Quantum yield η 0 =  r0 /(  nr0 +  r0 ) η=  r /(  nr0 +  r +  nr ) Introduction  r : radiative relaxation rate of the system metallic nanoparticle / molecule  nr : nonradiative relaxation rate of the molecule in the metallic nanoparticle Increase or decrease of luminescence depends on interplay between E loc,  r,  nr and thus on the Nanoparticle geometry and LSP resonance!

Experiments : QDs on Plasmonic NanoParticles (PNP)

Plasmonic NanoParticles fabrication e-e- e-beam lithographynanolithographied maskmetal evaporation lift off

The plasmon resonance is controlled over a wide spectral range (depends on the height to diameter ratio): below and above the QD emission peak Gold nanocylinders

Absorption and emission spectra of CdTe/CdS/TOPO Quantum Dots Absorption of the QD Emission of the QD : 665 nm peak TOPO organic ligands CdS shell CdTe core Wavelength (nm) No LSP resonance at the excitation wavelength (405 nm) !

Measured QD photoluminescence on different PNP patterns 140nm 130nm Bare QD 80nm Quantum dots in PMMA Collection area =1μ 2 Excitation wavelength : 405 nm

PL modification factor F as a function of the PNP diameter for gold and silver Enhancement of the PL by a factor 2.6 Photoluminescence enhancement and quenching PNP diameter (nm)

Modification factor of QD luminescence for gold nanocylinders Enhancement when the emission of the QD (665 nm) is close to the LSP resonance Wavelength (nm) Luminescence in absence of the nanocylinders F

Discussion Resonant behaviour of the QD photoluminescence when coupled to gold nanocylinders : increase of η Enhancement occurs when the emission is blue shifted (40 nm) with respect to the LSP resonance LSP resonance is obtained through plane wave excitation PNP is excited by the near-field of the emission dipole - Colas des Francs, G, et al. Optics Express, 16, 22, (2008) - Bharadwaj, P., Novotny, Optics Express, 15, 21, (2007 ).

Interdistance QD-PNP influence

PL modification as a function of the interdistance R PNP EnhancementPNP Quenching R decreasing

PL modification factor F as a function of the MNP - QD interdistance for gold PNP of 80nn, 100nm, 120nm, 130nm, 140nm and 160nm. PL modification as a function of the interdistance

QD - MNP coupling efficiency as a function of the interdistance R. E(R) shows a R -6 dependency

Quenching : non radiative energy transfer from the QD to the PNP : - if R > > PNP diameter : dipole - dipole coupling : 1/r 6 law - if R < < PNP diameter : plane - dipole coupling : 1/r 3 law QD Emitter couples to a protrusion on the PNP ! Discussion M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez Appl. Phys. Lett. 85, 3863 (2004)

Enhancement : two types - Coherent interference of radiations of the emission dipole and the induced dipole in the PNP : 1/r 3 law - Energy transfer from the emission dipole to the PNP followed by radiation of the PNP : 1/r 6 law Discussion M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez Appl. Phys. Lett. 85, 3863 (2004)

Conclusions Control of enhancement or quenching of the PL through the plasmonic nanoparticle size and resonance Near field coupling of the QD to the PNP accompanied by non radiative energy transfer P. Viste et al. ACS Nano. 4, 759 (2010)

Outlooks PNP induced modification and control of the luminescence radiation pattern : nanoantenna concept Huge enhancements of luminescence with plasmonic nanocavities Single QD intensity and lifetime measurements Complete model of the emitter/PNP system