Life of Synthetic CO2, Environmental Impact,

Slides:



Advertisements
Similar presentations
Prof. Dr. Olav Hohmeyer IPCC AR4 (2007) Results WG III Folie 1 A Short Overview of the IPCC Report on Climate Change Mitigation 2007 (WG III) Prof. Dr.
Advertisements

Opto-Electronics & Materials Laboratory Li-Jen Chou ( ) Investigations on low-dimensional nanostructures: synthesis, characterization, applications and.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Chapter 9 Chemical Quantities.
Xcel: An Update Clean Energy Action January 26, 2012 Leslie Glustrom
Worksheets.
Energy Challenges Dr. Robert MacKay. Outline Natural and Anthropogenic Climate Forcing.
Presentation downloadable from 1 John Harrison B.Sc. B.Ec. FCPA TecEco Managing Director Profitable Solutions to Global Warming and other.
HKCEE Chemistry Volumetric Analysis &
The innovation challenge STAKEHOLDER CONFERENCE "Post-2012 climate policy for the EU" 22 NOVEMBER 2004 Niklas Höhne ECOFYS Cologne,
INTERNATIONAL ENERGY AGENCY AGENCE INTERNATIONALE DE LENERGIE Energy Technology Policy Progress and Way Forward Fridtjof Unander Energy Technology Policy.
Metals, Nonmetals, Semi-metals
UKCCSC Meeting, April 2007 Nottingham Long Term Utilisation To develop, for the first time, catalysts which allow photocatalytic reduction to be.
M. Mercedes Maroto-Valer Ph: CENTER FOR INNOVATION IN.
"Activating Carbon Monoxide and Carbon Dioxide with Organometallic Uranium Complexes- Closing the Carbon Cycle" Geoff Cloke CPD Conference June 22 nd 2012.
Fuel Cells and a Nanoscale Approach to Materials Design Chris Lucas Department of Physics Outline PEM fuel cells (issues) A nanoscale approach to materials.
Materials Management and Climate Change An Introduction.
Catalysis in supercritical fluids Leiv Låte Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,
突破信息检索壁垒 -SciFinder Scholar 介绍
The basics for simulations
Carbon Capture & Storage: Why we need a campaign against Longannet Mandy Meikle Scotland Against New Coal Scottish Climate Camp 13 June 2009.
1 Special Properties of Au Nanocatalysts Maryam Ebrahimi Chem 750/7530 March 30 th, 2006.
Introduction to Fischer Tropsch Synthesis
Charging at 120 and 240 Volts 120-Volt Portable Vehicle Charge Cord 240-Volt Home Charge Unit.
Modified: OK. Childs 2002, Quant. Inf. Processing 1, 35 Source Fig. 14 Adaptation OK.
Exploring Nuclear Energy. Nuclear Fusion and Fission  Nuclear Fusion Small nuclei into large Immense temperature and pressure Core of stars Iron is the.
TOWARD HIGH ACTIVITY WITH PHOTOCATALYST DESIGN Dr. Leny Yuliati January 21-22, 2014 Workshop on Nanomaterials for Photocatalytic Depollution: Science and.
Global impact of Biotech crops: economic & environmental effects Graham Brookes PG Economics UK ©PG Economics Ltd 2008.
Created by Professor William Tam & Dr. Phillis Chang Ch Chapter 12 Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds.
Created by Professor William Tam & Dr. Phillis Chang Ch Chapter 20 Amines.
Electrochemistry Chapter 19
Resistência dos Materiais, 5ª ed.
Coal Gasification The Texas FutureGen Project Presented by Kristen Williamson ChE 379 Fall 2008.
Division of Materials Science & Engineering
Hongyan Ma Decreasing in coal and oil reserves A large number of consumption of natural gas Rich reserves in shale gas and coaled methane.
Filippo Parodi /Paolo Capobianco (Ansaldo Fuel Cells S.p.A.)
Business Development and Carbon Capture: Future Technologies for Green Energy Christopher W. Jones Georgia Institute of Technology School of Chemical.
Next Generation Fuel Cells: Anion Exchange Membrane Fuel Cells Presented By Jerry Gilligan Primary Source Material Lu, S., Pan, J., Huang, A., Zhuang,
Turning CO 2 into Fuel Transforming CO 2 Peter P. Edwards 2 nd May 2012.
Petroleum The Refining Process.
Insert Short Title of Project Insert Names Insert Project Information Combination of Chemical-Looping Combustion and Hydrothermal Conversion Combining.
Direct manufacture from methane (natural gas) without syn-gas, chemical recycling of carbon dioxide of industrial exhausts and eventually.
Striclty for educational purposes Final project in M.Sc. Course for teachers, in the framework of the Caesarea –Rothschild program of the Feinberg Grad.
Direct Oxidation of Methane to Methanol
Group 6: Jacob Hebert, Michael McCutchen, Eric Powell, Jacob Reinhart
Faculty of Engineering Dept of Petrochemical Engineering
Metal Nanoparticle/Carbon Nanotube Catalysts Brian Morrow School of Chemical, Biological and Materials Engineering University of Oklahoma.
Natural Gas: An Alternative to Petroleum? Crabtree, R. H. Chem. Rev. 1995, 95, American Methanol Institute, 2000 Natural gas reserves: ~ 60 years.
University of Texas at AustinMichigan Technological University 1 Module 3: Evaluation of Alternative Reaction Pathways Chapters 7 and 8 David T. Allen.
Carbon Dioxide: The Ultimate Carbon Source By: Brenton L. DeBoef And Stanley M. Barnett Chemistry and Chemical Engineering Dept. University of Rhode Island.
Green Chemistry Milan Sanader Author, Nelson Chemistry.
Catalyst Design and Preparation Dr. King Lun Yeung Department of Chemical Engineering Hong Kong University of Science and Technology CENG 511 Lecture 3.
John Kim CHE359 11/25/08. Search for Alternative Fuels Peak Oil is approaching or already passed. Oil market is becoming more and more volatile. Need.
Green Methanol from the Hydrogenation of Carbon Dioxide
Catalytic Partial Oxidation of Methane to Syngas and the DME Synthesis
Created by Allegra Liberman-Martin Drexel Proctor, Levi Moore, and Giselle Sulivan and posted on VIPEr on December 2009.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Synthesis of Acetic Acid Via CO2-CH4 Reformation and Carbonylation of Methanol Group I.H. – Jeremy Clark, Steve Dickman, Andrew Hinton, and Tim Schafermeyer.
Noble Metals as Catalysts Oxidation of Methanol at the anode of a DMFC Zach Cater-Cyker 4/20/2006 MS&E 410.
LOGO Water Gas Shift Reaction Over Au/Ce x Ti y O 2 Cheng Wan.
Fundamental Science Needs for Waste to Chemical Conversion: Fundamental Challenges and Opportunities in Catalyst Design Christopher W. Jones Georgia Institute.
한국진공학회 제 45 회 하계학술대회 Tutorial 08/21/2013 한국화학연구원 최지나.
Photocatalysis based on TiO2
C-H Functionalization: Shilov Chemistry
Fischer-Tropsch Synthesis
Fundamental Properties of Surface Sys
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
Presentation transcript:

Life of Synthetic CO2, Environmental Impact, Chemical Synthesis and Industrial Applications William Schulz Bechara Charette Group - Literature Meeting May 2nd, 2012

World's Top Market Value The world still relies heavily today on fossil fuels to cover about 80% of its energy needs 1) Oil&Gas : 5 2) Telecommunication : 2 3) Eletronics : 4 4) Pharma : 3 5) Food : 2 6) Natural Resources Exploration : 2 7) Bank : 3 8) Consumer goods & Retailing : 3 9) Internet :1 3 1 7 5 6 2 9 8 4

CO2 – One of the Largest Waste Product The world still relies heavily today on fossil fuels to cover about 80% of its energy needs Electricity Without Carbon, Nature News Feature, 14 August 2008, 454.

Global Warming? Image from http://berkeleyearth.org/analysis - by Berkeley Earth Surface Temperature Institute. Retrieved 2012-05-02.

Global Warming? Year a) Briffa, K. R.; Osborn, T. J.; Schweingruber, F. H.; Harris, I. C.; Jones, P. D.; Shiyatov, S. G.; Vaganov, E. A. J. Geophys. Res. 2001, 106, 2929. b) Esper, J.; Cook, E. R.; Schweingruber, F. H. Science 2002, 295, 5563. c) Jones, P.D.; Briffa, K. R.; Barnett, T. P.; Tett, D. F. B. The Holocene, 1998, 8, 455. d) Mann, M.E., R.S. Bradley and M.K. Hughes, Nature, 1998, 392, 779.; Geophysical Research Letters, 1999, 26, 759. e) Jones, P. D.; Mann, M. E. Reviews of Geophysics, 2004, 42, RG2002 1-42. 

CO2 vs Global Warming? Petit, J. R et al Nature 1999, 399, 429.

CO2 and Global Warming? [...] records suggests a close link between CO2 and climate [...] The role and relative importance of CO2 in producing these climate changes remains unclear [...] a) Petit, J. R et al. Nature 1999, 399, 429. b) Barnola, J.-M.; Raynaud, d.; Korotkevich, Y. S.; Lorius C. Nature, 1987, 329, 408. c) Lorius, C.; Jouzel, J.; Raynaud, D.; Hansen, J.; Le Treut, H. Nature, 1990, 347, 139. d) Martıinez-Garcia, A. et al. Nature 2011, 476, 312. e) Tripati, A. K. et all. Science 2009, 326, 1394. f) Shakun, J. D. et al. Nature 2012, 484, 49.

CO2 Emissions Going Up Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

CO2 Emissions : Natural vs Human (Anthropogenic CO2) 3.2 GtC/y in 1990 24 GtC/y in 2010 Gigatons of C/year  Solomon, S.; Qin, D.; Manning, M. ; Chen, Z.; Marquis, M. ; Averyt, K. B.; Tignor, M.; Miller, H. L. IPCC Fourth Assessment Report: Climate Change, 2007, chap. 7, 515. at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

Life of Synthetic CO2 Image from http://www.theurbn.com/2011/06/capturing-time-bp-and-the-future by  Hayley Peacock, Capturing Time: BP And The Future, UubanTimes news. Retrieved 2012-05-02.

CO2 Storage / Enhanced Oil recovery a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

CO2 Storage / Enhanced Oil recovery a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

CO2 Emissions – CCS Project Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - by Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

Carbon Capture and Storage (CCS) Project Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

CCS Project - Operational Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

CO2 Scrubbing (Purification) O2, N2 and other gas Amines MgO M-oxides Cold Hot CO2, H2O, CO, O2, N2 and other gas MacDowell, N. et al. Energy Environ. Sci. 2010, 3, 1645.

Recycling CO2  Only 1% of the total CO2 on Earth is currently being used for chemical synthesis : Chemical inertness, CO2 capture and storage is expensive. Recycling CO2 for the production of chemicals not only lower the impact on global climate changes but also provides a grand challenge in exploring new concepts and opportunities for catalytic and industrial development. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

Other use of CO2 Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

Annual industrial use of CO2 in megatons 3.2GtC/y in 1990 24GtC/y in 2010 Gigatons of C/year  Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

Properties of CO2 as Ligand - Thermodynamically stable - High energy substances required Coordination Modes a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. c) Ma, J.; Sun, N. N.; Zhang, X. L; Zhao, N.; Mao, F. K.; Wie, W.; Sun, Y. H. Catal.Today, 2009, 148, 221. d) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

CO2 Reduction a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

CO2 Reduction “Homogeneous catalysts show satisfactory activity and selectivity, but the recovery and regeneration are problematic. [...] Heterogeneous catalysts are preferable in terms of stability, separation, handling, and reuse, as well as reactor design, which reflects in lower costs for large-scale productions.” a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

Reduction Potential of CO2 at pH=7 CO2 + 1e- → CO2•- E0 = -1.90 V CO2 + 2H+ 2e- HCO2H E0 = -0.61 V CO + H2O E0 = -0.53 V CO2 + 4H+ 4e- H2CO + H2O E0 = -0.48 V CO2 + 6H+ 6e- CH3OH + H2O E0 = -0.38 V CO2 + 8H+ 8e- CH4 + 2H2O E0 = -0.24 V a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja., J. M. Chem. Soc. Rev. 2009, 38, 89. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Reduction of CO2 to CO  Reverse water gas shift (RWGS) is the most promising process : - Metal : Cu, Cu/SiO2, Cu–Ni/Al2O3, Cu/ZnO, Cu–Zn/Al2O3, Pd/Al2O3, Pt/Al2O3, Pt/CeO2, Ni/CeO2, Rh/SiO2 (from Rh2(OAc)4) - Temperature : >600 °C - Cu-based systems remain mostly used. - Often reduction to CH4 occurs since CO is a better ligand than CO2 a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Kusama, H.; Bando, K. K.; Okabe, K.; Arakawa, H. Appl. Catal., A 2001, 205, 285. c) Bando, K. K.; Soga, K.; Kunimori, K.; Arakawa, H. Appl.Catal., A 1998, 175, 67. d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Reduction of CO2 to CO a) Ernsta, K. H.; Campbell, C. T.; Moretti, G. J. Catal. 1992, 134, 66. b) Fujita, S. I.; Usui, M.; Takezawa, N. J. Catal. 1992, 134, 220. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Reduction of CO2 to CO Mechanism with Pt/CeO2 a) Goguet, A.; Meunier, F. C.; Tibiletti, D.; Breen, J. P.; Burch, R. J. Phys. Chem. B 2004, 108, 20240. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Photochemical Reduction of CO2 to CO Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346

1st Photochemical Reduction Using Ru Complex Recent Advances : Reducing catalyst Photocatalyst Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346

Reduction of CO2 to CH4 - Sabatier Reaction  Important catalytic process for the production of syngas (CH4 and H2) - Thermodynamically favoured. - Metal = Ni, Ru, Rh, Pd, Pt. - Oxide support : SiO2, TiO2, Al2O3, ZrO2, CeO2, MgO, ZrO2, NiO, NiAl2O2. - Temperature : 400 - 700 °C - Dispersion and surface of oxides is important. - Ni is the best catalysts at 400 °C and exhibits excellent catalytic activity and stability yielding CO2 at 76% conversion and a selectivity to CH4 (vs CO and MeOH) of 99%. - Research is being conducted by the National Aeronautics and Space Administration on the application of the reaction using Ce0.72Zr0.28O2 in pace colonization on Mars to convert the Martian CO2 into CH4 and H2O for fuel and astronaut life-support systems. a) Lunde, P. J.; Kester, F. L.; Ind. Eng. Chem. Process Des. Dev. 1974, 13, 27. b) Du, G. A.; Lim, S.; Yang, Y. H.; Wang, C.; Pfefferle, L.; Haller, G. L. J. Catal. 2007, 249, 370. c) Park, J. N.; McFarland, E. W.; J. Catal. 2009, 266, 92. d) Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Appl. Catal., A 2003, 247, 309. e) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Potential Bifunctional Model for Pd/MgO Catalysis a) Park, J. N.; McFarland, E. W. J. Catal. 2009, 266, 92. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Synthesis of Hydrocarbons - Gasification of coal, synthesis of syngas : - Fischer-Tropsch process : 300,000 barrels of hydrocarbons/year - Modification to CO2 : - Metal : Cu, Fe, Co. - Support : Al2O3, Mn, Zr, Zn. Reaction are limited to small chains, H2O formed suppresses the reaction and they are not cost effective in most cases. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res. 2001, 40, 1355.

CO2 to MeOH - Metals : Ag, Au, Pd, Cu - Support (oxides) : Zn, Zr, Ce, Al, Si, V, Ti, Ga, B, Cr. - Temperature : 200-300 °C - Industrial use Cu/ZnO gives 99% selectivity to MeOH (vs CH4) at 260 °C 40 Mt/year for the synthesis of formaldehyde, methyl tert-butyl ether and acetic acid. a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

Potential CO2 to MeOH in Industry 82% of conversion a) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. b) Shulenberger, A. M.; Jonsson, F. R.; Ingolfsson, O.; Tran, K.-C. Process for Producing Liquid Fuel from Carbon Dioxide and Water. US Patent Appl. 2007/0244208A1, 2007. c) Tremblay, J.-F. Chem. Eng. News 2008, 86, 13. d) Image from http:/newenergyandfuel/com/2008/08/29/a-new-leading-process-for-co2-to-methanol – A New Leading Process For CO2 to Methanol, Mitsui Chemicals Inc., New energy and fuel news.

Synthesis of HCOOH X Y Y X Synthesis of HCOOH from CO2 is still limited. X Y Y X Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

Synthesis of HCOOH Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

Synthesis of HCOOH Analysis by H NMR : Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

Combustion Heat of Fuels in Higher Heating Value (HHV) George A. Olah et al. : [...] Recycling of carbon dioxide [...] however, there is only limited interest in the US [...]. a) Image from http://en.wikipedia.org/wiki/Heat_of_combustion – Wikipedia - Heat of combustion. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487.

CO2 in Organic Chemistry Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Industrial Synthesis of Salicylic Acid a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Urea Synthesis and Derivatives Mesoporous silica a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Reaction of CO2 with Organometallic Reagents a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Dialkyl Carbonate Synthesis With Phosgene : With CO2 : Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Dimethyl Carbonate Synthesis Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Dimethyl Carbonate Synthesis from Epoxides a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. b) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Torii, K.; Arai, M. Green Chem. 2003, 5, 71

Catalyst / cocatalyst / epichlorohydrin Polymerization 2.0 MPa Catalyst / cocatalyst / epichlorohydrin 1/1/1000 (molar ratio) Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

C-C Bond Formation Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

Synthesis of a Cyclic Carbonate from an Oxirane a) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Baba, A.; Kashiwagi, H.; Matsuda, H. Organometallics 1987, 6, 137. c) Tian, J. S.; Wang, J. Q.; Chen, J. Y.; Fan, J. G.; Cai, F.; He, L. N. Appl. Catal., A 2006, 301, 215.

Reaction of CO2 with Organometallic Reagents a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Possible Catalytic Synthesis of Acrylic Acid “b-H elimination is not favored for steric reasons: the rigid five membered ring does not allow the b-H atoms to come close to the nickel center.” a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Bruckmeier, C.; Lehenmeier, M. W.; Reichhardt, R.; Vagin, S. ; Rieger, B. Organometallics 2010, 29, 2199.

No Catalysis Possible a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Catalysis with MeI <56% MeI decomposes the Ni complex a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Ni-Catalyzed Stereoselective Ring-Closing Carboxylation a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Ni-Catalyzed Stereoselective Ring-Closing Carboxylation Reductive elimination Bisallyl species b-H elimination L : Phosphine ligand ZnEt2 : Transmetalation & reduction of Ni a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Coupling of CO2 and Alkynes + + <10% a) Inoue, Y.; Itoh, Y.; Hashimoto, H. Chem. Lett. 1977, 85. b) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Ni- Catalyzed Organozinc Coupling with CO2 Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

Reaction Mechanism Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

Au Catalyzed Carboxylation of C-H Bonds Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

Au Catalyzed Carboxylation of C-H Bonds Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

Au Catalyzed Carboxylation of C-H Bonds Mechanism Also done with Cu(IPr)Ot-Bu a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858. b) Lckermann, L. Angew. Chem. Int. Ed. 2011, 50, 3842.

Biomass Synthesis Algae + CO2 + H2O + hn = O2 + Biomass (Biofuel) CO2 RWE's Algae Project, The Niederaussem Coal Innovation Centre, http://www.rwe.com/web/cms/en/213188/rwe-power-ag/innovations/coal-innovation-centre/rwes-algae-project/

Conclusion A lot of work has been done for CO2 recycling and still a lot of work will have to be done to lower CO2 emissions. Elucidate mechanisms Find more cost-effective methods Incorporate renewable source of energy. ex. solar, etc. Perform cyclic reactions where CO2 is formed and reduced in one reactor providing clean energy. Fuels Renewable Energy Reduction Combustion Energy Why not directly invest in renewable energy???

Consolidating Phase for the Pharma - AstraZeneca announced it is buying Ardea for $1 billion. Watson Pharmaceuticals announced it is buying Actavis for $5.6 billion. J&J stated being days away from closing on its $21 billion acquisition of Synthes. Glaxo got rebuffed from Human Genome Sciences in a $2.6 billion bid. Pfizer announced the $12 billion divestiture of its infant nutritional business to Nestlé. Why?  Blockbusters going off patent Fewer drug approvals Consequences : - Buy companies with solid pipelines that will deliver growth Layoff More partnerships to save $ : ex. Merck : 75 partnerships, Lilly : > 100 partnerships, etc One biotech CEO who had sold his first company for several hundred million dollars, who is now on his second, put it this way to me: “Large pharma can’t develop drugs any more.  They are too slow.  They make decisions for political reasons.  Their hurdles are too high.  They have to keep buying companies like us just to stay innovative.” What's Really Driving The Pharma M&A Frenzy, Forbes, http://www.forbes.com/sites/davidmaris/2012/04/27/pharma-feeding-frenzy/