WG-D: Commissioning Strategies, Operations and Performance, Beam Loss Management, Activation, Machine Protection Conveners: J. Galambos, T. Koseki, M.

Slides:



Advertisements
Similar presentations
WG 4: High Power Proton Accelerators S. Holmes, J. Thomason PASI Collaboration Meeting April 3-5, 2013.
Advertisements

Machine Physics at ISIS Proton Meeting 24 th March 11 Dean Adams (On behalf of ISIS Accelerator Groups)
1 J-PARC and T2K 1.Accelerator construction status and commissioning 2.Accelerator upgrade plan in first 5 years 3.Experiments with slow extracted beam.
SNS Spallation Neutrino Source 1 SNS layout GeV proton linear accelerator Accumulator ring Main target Stripping foil.
2013 Apr.30-May.03 Shuei EPICS Collaboration Meeting 2013 Spring 1 Acquisition of Long Waveform using Yokogawa SL1000 Shuei YAMADA KEK / J-PARC.
ISIS Accelerator Division
Current Status of Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron H. Harada*, K. Shigaki (Hiroshima University in Japan), H. Hotchi, F. Noda,
Masahito TOMIZAWA and Satoshi MIHARA Accelerator and proton beam.
1 Proton Upgrades at Fermilab Robert Zwaska Fermilab March 12, 2007 Midwest Accelerator Physics Collaboration Meeting Indiana University Cyclotron Facility.
Beam position monitors LCABD Plenary meeting Bristol, 24th March 2009 A. Aryshev, S. T. Boogert, G. Boorman, S. Molloy, N. Joshi JAI at Royal Holloway.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
NOvA meeting PIP Update W. Pellico. PIP Goals and Scope (Provided in 2011 – Directorate S. H. / DOE Talk ) Goals: Specific to the issues surrounding the.
ORNL-SNS Diagnostic Group SNS Beam Loss Monitors and HARPs Machine Protection System FDR September 11,2001 Presented by Saeed Assadi.
SNS Integrated Control System EPICS Collaboration Meeting SNS Machine Protection System SNS Timing System Coles Sibley xxxx/vlb.
NuMI NuMI Overview NBI 2002 S. Childress (FNAL) 14 March ‘02 NuMI / MINOS Overview.
AGS Polarized Proton Development toward Run-9 Oct. 3, 2008 Haixin Huang.
F MI High Power Operation and Future Plans Ioanis Kourbanis (presented by Bruce Brown) HB2008 August 25, 2008.
Run II DOE Review - Booster Eric Prebys Booster Group Leader FNAL Beams Division.
Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron H. Harada*, K. Shigaki (Hiroshima University in Japan), H. Hotchi, F. Noda, H. Sako, H. Suzuki,
August 05, Startup 2013 Machine Status:  Proton Source Commissioning and Studies RFQ Injector Line (RIL) Linac Booster  Main Injector Startup.
PAUL SCHERRER INSTITUT CERN / Oct / P.A.Schmelzbach.
F Project X Overview Dave McGinnis October 12, 2007.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
Details of space charge calculations for J-PARC rings.
Ralph Assmann What Do We Want To Measure (in 2009) R. Assmann S. Redaelli, V. Previtali CERN/BE discussed with W. Scandale CERN/EN26/3/2009CC09  See also.
J-PARC Accelerators Masahito Tomizawa KEK Acc. Lab. Outline, Status, Schedule of J-PARC accelerator MR Beam Power Upgrade.
Highlights of RP activities in support of ISOLDE operation and projects Joachim Vollaire, Alexandre Dorsival and Christelle Saury with material from others.
F All Experimenters' Mtg - 28 Jul 03 Week in Review: 07/21/03 –07/28/03 Keith Gollwitzer – FNAL Stores and Operations Summary Standard Plots.
RHIC Status: Startup Run 12 V. Schoefer RHIC Spin Collaboration Meeting 1/13/12.
Challenges of Dual Harmonic RF Systems ISIS Synchrotron Group John Thomason.
F Proton Plan Eric Prebys, FNAL Accelerator Division.
1 BROOKHAVEN SCIENCE ASSOCIATES Storage Ring Commissioning Samuel Krinsky-Accelerator Physics Group Leader NSLS-II ASAC Meeting October 14-15, 2010.
May 4, 2010 EBIS ARR Jim Alessi May 4- 7, 2010 Pre-commissioning and Commissioning.
PIP Status Report Linac Startup plans 12/05/2012.
Overview: Primary Sensitivities Nov S. Childress Page 1 NuMI Overview: NuMI Primary Beamline Sensitivities NuMI requirements are for a very large.
All Experimenters' Mtg - Aug. 04, 2003 Week in Review: 07/28/03 –08/03/03 Doug Moehs – FNAL Stores and Operations Summary Standard Plots.
Managed by UT-Battelle for the Department of Energy Residual Does Rate Analyses for the SNS Accelerator Facility I. Popova, J. Galambos HB2008 August 25-29,
Managed by UT-Battelle for the Department of Energy Using Online Single Particle Model for SNS Accelerator Tuning Andrei Shishlo, Alexander Aleksandrov.
Residual Radiation Cooldown: Main Injector Bruce C. Brown Fermilab All Experimenters Meeting 19 March 2012.
RHIC Run11 Summary May 6, 2011 RSC Meeting Haixin Huang Luminosity Availability Polarization RHIC setup issues.
Project X RD&D Plan Beam Transfer Line and Recycler Injection David Johnson AAC Meeting February 3, 2009.
F All Experimenters' Mtg - 2 Jun 03 Weeks in Review: 05/19/03 –06/02/03 Keith Gollwitzer – FNAL Stores and Operations Summary Standard Plots.
NuMI Primary BooNE / NuMI S. Childress (FNAL) Primary Beams for Mini-BooNE & NuMI 18 March, 2002 Mini-BooNE inputs from Craig Moore and Al Russell Includes.
J-PARC Accelerator and Beam Simulations Sep. 7th, SAD2006 Masahito Tomizawa J-PARC Main Ring G., KEK Outline of J-PARC Accelerator Characteristics of High.
Updated Overview of Run II Upgrade Plan Beam Instrumentation Bob Webber Run II Luminosity Upgrade Review February 2004.
Booster Losses Keith Gollwitzer PIP and MI 700 kW review January 2015.
Doug Michael Sep. 16, GeV protons 1.9 second cycle time 4x10 13 protons/pulse 0.4 MW! Single turn extraction (10  s) 4x10 20 protons/year 700.
Beam-beam compensation at RHIC LARP Proposal Tanaji Sen, Wolfram Fischer Thanks to Jean-Pierre Koutchouk, Frank Zimmermann.
Main Injector Beam Position Monitor Upgrade: Status and Plans Rob Kutschke All Experimenters’ Meeting April 3, 2006 Beams-doc-2217-v3.
High Intensity Booster Operations William Pellico PIP II collaboration Nov. 9 th 2015.
Users' Mtg - 4 Jun 08 FNAL Accelerator Complex Status Ron Moore Fermilab – AD / Tevatron Dept.
Proton Planning Eric Prebys FNAL Accelerator Division.
Setting BLM Limits in the Booster The Booster is now delivering all the protons needed by the collider program, and about 40% of the protons needed by.
Early Beam Injection Scheme for the Fermilab Booster: A Path for Intensity Upgrade Chandra Bhat Fermi National Accelerator Laboratory DPF2015, ANN ARBOR,
Proton Plan Director’s Review 8/15/06 Prebys Proton Plan Answers to Questions Director’s Review August 2006 Eric Prebys.
August 12, Machine Status: 2013  Proton Source Commissioning and Studies RFQ Injector Line (RIL) Linac : Roof hatch installed Booster : Magnet.
PAC Meeting, December 12, Prebys 1 The Problem.
Run 10 Start-up Status
Limitations to Total Booster Flux Total protons per batch: 4E12 with decent beam loss, 5E12 max. Average rep rate of the machine: –Injection bump magnets.
SNS linac beam commissioning By Michael Plum Spallation Neutron Source Oak Ridge National Laboratory ESS Workshop on beam commissioning April 8-9, 2014.
Beam Diagnostics Seminar, Nov.05, 2009 Das Tune-Meßverfahren für das neue POSI am SIS-18 U. Rauch GSI - Strahldiagnose.
Machine Protection Systems (MPS) Arden Warner, and Jim Steimel Project X Machine Advisory Committee March 18-19, 2013.
HB2008 – WG F: 27 Aug. S. Childress – Diagnostics_2MW 1 NuMI Beam Diagnostics and Control Steps to 2 MW S. Childress Fermilab.
M. Munoz April 2, 2014 Beam Commissioning at ESS.
A RHIC Low-Energy Test Run With Protons Todd Satogata (W. Fischer, T. Roser, J. DeLong, M. Brennan, D. Bruno, and others) April 11, 2006 Driven by discussions.
Primary Design Parameters July 13,2001 S. Childress Page 1 NuMI Besides design specifications driven by physics and Main Injector beam parameters, significant.
PSI, Zurich February 29 – March Session classification : Accelerator Concepts Tuesday, March 1, 2016 Introduction Vyacheslav Yakovlev Fermilab,
SuperB Injection, RF stations, Vibration and Operations
Injector Chain General and more about p-RCS
Advanced Research Electron Accelerator Laboratory
Presentation transcript:

WG-D: Commissioning Strategies, Operations and Performance, Beam Loss Management, Activation, Machine Protection Conveners: J. Galambos, T. Koseki, M. Seidel, Speakers: D. Findlay, D. Raparia, L. Rybarcyk, B. Brown, S. Childress, T. Weiler, M. Ikegami, A. Shishlo, D. Kiselev, I. Popova

WG-D Charge Commissioning Strategies, Operations and Performance, Beamloss Management, Activation and Machine Protection (2.5 sessions) Scope: Performance of operating facilities; limitations to intensity and beam power in operating facilities; commissioning and tune-up experience, algorithms and strategies at new and existing high intensity machines; beam loss performance of operating facilities; activation simulations and tracking; systems for machine protection and minimization of activation; active handling methods Working Group Charge: Summarize the present performance parameters of the existing high intensity facilities, and planned performance of new facilities. Summarize the key limitations to performance at each of the existing and planned high intensity facilities. Summarize the commissioning and tune-up algorithms and techniques in use and envisioned, and those that have proven to be especially useful. Summarize key needs from theory, simulation, controls, etc. to enhance performance, aid commissioning and tune-up. Summarize the beamloss and activation performance of existing high-power proton facilities. Summarize the strategies for operation and maintenance of loss-limited facilities.

Summary of commissioning talks 1. J-PARC accelerators 2. SNS commissioning tool 3. Discussion & answers to the questions

J-PARC Accelerators (1) :Linac The linac commissioning has been started in Nov And the linac has been operated to provide a stable beam for the downstream facilities for nearly one year. Now the linac is in the transition phase from commissioning to operation. Stability of Linac: Energy deviation is 16 keV (RMS) at exit of debuncher 2 for 9 hrs. operation. Position jitter at the RCS injection is around 60µm in rms.

J-PARC Accelerators (2) : Synchrotrons The RCS commissioning has been started in Oct And the RCS has completed initial tunings of basic parameters. The efforts will be focus on high power operation. The MR commissioning has started in May Beam tuning and parameter measurements in the injection energy of 3 GeV have been done successfully. Acceleration up to 30 GeV and extraction to experimental facility is scheduled from December Demonstration of 1e13 ppp extraction from the RCS in single shot mode: It corresponds to 0.13 MW for 25 Hz. Measured results of beta function of the MR.

SNS commissioning tools XAL, a Java based high level programming for physics application, has been being developed since the beginning of the SNS commissioning. Online Model Channel Access Application Framework General Tools ServicesApplications App. 1App. 2 App. 3 … XAL structure An example: PASTA-Phase/amplitude scan and tuning application What we did right:  Early staged commissioning approach  Iterative Approach for Commissioning Tools  Using physicists (i.e. commissioners) to write applications (Need a core group of “mentor” programmers)  Educational efforts What we did wrong:  Most applications and some of tools are SNS specific  Lack of documentation  Did not implement service daemons to reduce EPICS traffic  We used commercial plotting package (JClass) in the open source software (XAL)

Discussion & answers to the questions - Operation shifts for commissioning run 24 hr. shifts : SNS, … 12 hr. shifts (12 hr. operation and 12 hr. break): J-PARC, NuMI.. Reason of 12 hr. shift NuMI: Real time participation of all system experts. J-PARC: Reason is the same as NuMI. But in other words, shortage of man power. - Most useful tools J-PARC MR: BPMs ( both turn-by-turn and COD modes), IPM. NuMI: Beam permit system, 12 hr shift, autotune beam control system, and robust beam instrumentation performance especially, with BLM, BPM. - Biggest problems J-PARC MR: Ripple/fluctuation on the beam due to current ripple of magnet PS’s. NuMI: One corrector data base polarity bit was wrong, and some profile monitors had readout problems for a few pulses. A data base scaling error for one quad. -How long does it take to get the first order beam commissioning J-PARC MR: 4 days ( transportation, injection, circulation with rf capture and extraction) NuMI: After four 12 hour shifts, we accomplished all goals of establishing readiness for subsequent higher intensity beam commissioning, including instrumentation and beam control checkout.

Operational Experience of High Power Machines ~ 0.06Linac / RCS chain, (pulsed) BNL Booster/AGS ~ 0.18Linac / RCS, (pulsed)ISIS ~ 0.1 (linac ran 1 MW)Linac / accumulator ring (pulsed) LANSCE 0.34Linac / RCS chain, (pulsed) NUMI (FNAL MI, Booster) 0.5Linac/accumulator Ring, (pulsed) SNS 1.2Cyclotron chain, (CW)PSI Power (MW)Accelerator

Residual Activation – Uncontrolled Beam 30 cm, 24 hrs after shutdown Most areas are much lower (approaching 0) PSI: at extraction LANSCE: Ring values, Linac is lower FNAL Booster: 1 hr cool-down, FNAL MI: 3-4 hr cool-down BNL: after 10 hours

Residual Activation – Controlled Beam 30 cm, 24 hrs after shutdown ISIS: Collimation after a few days (???) PSI: at extraction LANSCE: after 4 hrs at PSR Injection FNAL Booster: 1 hr cool-down, extraction, collimation FNAL MI: contact, extraction, abort BNL: cool-down, 10 hrs – NOT beam loss limited SNS: Injection

Individual Worker Dose Facilities tend to impose factors of 3-4 safety on government limits BNL: max. for highest intensity running period of

Collective Worker Dose (In Progress) Some different rules about who is included, LANSCE data is for one particularly hot job BNL is average for SNS is 2008 to date

Availability (= beam on time / promised beam on time) ISIS = average for ~ last 10 years, LANSCE and PSI are 2007, SNS is 2008 to date NUMI availability is dominated by Target hall – FNAL total accelerator chain is ~ 90% availability

Trip Frequency 1000’s of trips / year for CW, high rep rate cases (PSI, SNS) SNS is not a mature facility

Operation Rhythm (I) How long does it take to restore beam to previous capability after an extended maintenance: –PSI:~2-4 days tuning + 4 days equipment readiness –ISIS: 1 week/month –FNAL booster (MI):1 week/month off (2 days) –LANSCE: 1 month - includes conditioning, protection certification, machine tuning, equipment issues - 1 shutdown/year –SNS: painful days

Operational Rhythm II What is a typical run cycle –ISIS: ~50-60 days: 40 days run / 3 days beam studies, 10 day sort shutdown, 10 days startup –PSI: 3 weeks with 2-3 day beam study / maintenance –LANSCE: ~1 month cycle: 24 day block: 1-2 day beam studies day maintenance + 1 day recovery –FNAL/NUMI:10-14 week planned shutdown/year, otherwise run to failure –SNS: 3 weeks with 5 day beam study/maintenance

Impact of High Power The influence of high power has a strong impact on accelerator operation. Need to protect the Target from off normal conditions is critical –Target protection systems have a strong influence at PSI, NUMI, SNS –Nuisance trips, need for reliable beam diagnostics –High power protection needs to be considered in the machine designs Damaged PSI Target Beam punch-through with 20 kW beam

LHC Collimation (T. Weiler) High intensity (stored energy) beams also impose severe constraints on the accelerator protection against continuous loss and other fault conditions Need highly reliable collimation systems that effectively protect Accelerator hardware during long stores that track the beam size

is important in order to.. to predict activation to be expected for maintenance work to obtain a better understanding of activation buildup to make extrapolations what is to be expected at higher beam currents prediction of isotope inventory required for material disposal [legally required] Simulation and Monitoring of Component Activation for High Power Accelerators comments: activation measurements in accelerator can be used to estimate the beam loss magnitude, if appropriate models exist precision of prediction typically within factor 3 compared to measurements empirical extrapolation of previous experience provides a similar precision specialized codes are developed in cooperation at different labs; synergies should be used can use loss monitors for a live monitoring of residual radiation

Example for computational precision: prediction of isotopes in Al-target hull at PSI [D.Kiselev] not obtained in calculation simulation by MCNPX + Cinder‘90 expected / computed activity

Thanks to the WG-D conveners, speakers and discussion participants