Nuclear Structure Physics at 4GLS

Slides:



Advertisements
Similar presentations
? Nuclear Reactions Categorization of Nuclear Reactions
Advertisements

Accelerator Physics, JU, First Semester, (Saed Dababneh).
Basic Nuclear Properties
Günther Rosner EUROHORC/NuPECC, Paris, 29/11/04 1 Hadron Structure & Spectroscopy Experimental frontiers: High precision High intensity Theoretical symbiosis:
N. Pietralla and K. Sonnabend for the SFB 634
Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Robert Michaels PREX at Trento PREX Workshop 09 Physics Interpretation of PREX 208 Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating.
Femtosecond lasers István Robel
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee 1*, E. Sh. Soukhovitskii 2, Y. D. Kim 1, R. Capote.
Photodissociation as a tool for nuclear astrophysics S. Müller, M. Elvers, J. Endres, M. Fritzsche, J. Hasper, K. Lindenberg, L. Kern, D. Savran, C. Siegel,
Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
Hadron physics with GeV photons at SPring-8/LEPS II
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
5 MeV Mott Measurement for CEBAF Operations group Joe Grames, Marcy Stutzman February 14 th, 2007 Sir Nevill F. Mott at the ceremony with his Nobel Prize.
Giant resonances, exotic modes & astrophysics
Spectroscopy at the Particle Threshold H. Lenske 1.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
HL-5 May 2005Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-5) Collective excitations of nuclei photo-excitation of GDR particle-hole excitations.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Dipole Strengths in 112,120 Sn and Systematics of the Pygmy Dipole Resonance at Z=50 Shell Closure BANU ÖZEL 1,2, J. ENDERS 1, Y. KALMYKOV 1, P. von NEUMANN-COSEL.
II. Spontaneous symmetry breaking. II.1 Weinberg’s chair Hamiltonian rotational invariant Why do we see the chair shape? States of different IM are so.
The Collective Model Aard Keimpema.
Nuclear Physics UConn Mentor Connection Mariel Tader.
Nuclear models. Models we will consider… Independent particle shell model Look at data that motivates the model Construct a model Make and test predictions.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
LESSON 4 METO 621. The extinction law Consider a small element of an absorbing medium, ds, within the total medium s.
Norbert Pietralla TU Darmstadt1 1. Feb Current Themes of Nuclear Research and how the ELI photonuclear pillar could contribute to them Norbert Pietralla.
The Shell Model of the Nucleus 5. Nuclear moments
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Nuclear structure investigations in the future. J. Jolie, Universität zu Köln.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
From Luigi DiLella, Summer Student Program
Symmetries in Nuclei, Tokyo, 2008 Symmetries in Nuclei Symmetry and its mathematical description The role of symmetry in physics Symmetries of the nuclear.
Investigation of Parity Quantum Numbers with Laser Compton Back-Scattered Photons ELI-NP: The Way Ahead – March, 2011 C. Romig, J. Beller, J. Isaak,
Helmholtz International Center for Opportunities for NuSTAR and Accelerator R&D Norbert Pietralla Technical University Darmstadt (TUD) (Institute for Nuclear.
Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School I.
Pygmy Dipole Resonance in 64Fe
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Institut für Theoretische Physik, Universität Giessen LOW-ENERGY MULTIPOLE EXCITATIONS AND NUCLEOSYNTHESIS Nadia Tsoneva INTERNATIONAL SCHOOL OF NUCLEAR.
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
ExperimentSpokesmanGoalRunning time Thesis? Scissors ModeTonchevAnalyze Scissors Mode excitations in actinide nuclei Pgymy DipoleTonchevAnalyze evolution.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh) Nuclear and Radiation Physics Why nuclear physics? Why radiation.
Quantum Phase Transitions (QPT) in Finite Nuclei R. F. Casten June 21, 2010, CERN/ISOLDE.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Extreme independent particle model!!! Does the core really remain inert?
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING.
Norbert Pietralla Isolde WS2007 Nuclear Mixed-Symmetry States as Probe for pn Effective Valence Shell Interaction Institut für Kernphysik, TU-Darmstadt.
Physics with Medium Energy (>100 MeV) Gamma-Rays Blaine Norum University of Virginia 10/16/15 FACET II Science Workshop Physics with Medium Energy (>100.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Electromagnetic moments Electromagnetic interaction  information about.
g-ray spectroscopy of the sd-shell hypernuclei
SFB 634 *Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2 Complete Dipole Strength Distributions from High-Resolution Polarized Proton Scattering.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy The Department.
Nature of Mixed-Symmetry 2 + States in 94 Mo from High-Resolution Electron and Proton Scattering and Line Shape of the First Excited 1/2 + State in 9 Be.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
ELI & FAIR: A Natural Pair Nuclear Structure w
Shape parameterization
Kellogg Radiation Lab, Caltech Pasadena, CA
individual excitations of nucleons
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
Presentation transcript:

Nuclear Structure Physics at 4GLS Norbert Pietralla Institut für Kernphysik Darmstadt University of Technology TUD Collaborative Research Center SFB634 Research Center of Excellence Nuclear and Radiation Physics TUD Professor Dr. Norbert Pietralla TU Darmstadt

Vision of Nuclear Physics Understanding the properties of heavy atomic nuclei from their basic constituents, quarks and gluons, and from the interactions between them. Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Relevance Deductive understanding of Nature Solid understanding of the nucleus as a laboratory for other fields (standard model, neutrino physics, strongly interacting many-body Fermi-systems…) Dynamics of cosmic objects and the “Origin of the Elements“ (astrophysics, nuclear astrophysics) Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Recent Progress Systematic derivation of structural form of nucleon-nucleon interaction from QCD in Chiral Perturbation Theory Unique low-energy NN-potential Vlow-k from Renormalization Group approach Non-perturbative all-order calculations from self-consistent iteration methods for nuclear many-body systems Advanced many-body techniques, e.g., No-Core Shell Model, Monte-Carlo Shell Model,… Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Once the atomic nucleus is formed effective (in-medium) forces can generate simple pattern. shell structure: valence nucleons Cooper pairing: N s,d boson system Collective motion: nuclear shapes Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Outline Nuclear physics with low-energy photons (nuclear dipole physics) Impact of photon beams from Laser Compton Backscattering Recent progress at Duke‘s HIS Research potential of -ray beams from Laser Compton Backscattering Summary Professor Dr. Norbert Pietralla TU Darmstadt

Nuclear Structure Physics with low-energy photon beams Pure EM-interaction (nuclear-) model independent “small“ cross sections, thick targets Minimum projectile mass min. angular momentum transfer, spin-selective: dipole-modes Polarisation “Parity physics“ Professor Dr. Norbert Pietralla TU Darmstadt

Role of Isovector Spin-flip M1 excitations in Nuclear Physics (MeV) Nucleon-Spin-flip Quark-Spin-flip Professor Dr. Norbert Pietralla TU Darmstadt

Electric Giant Dipol Resonance (GDR) Protons Neutrons E1 GDR in 197Au GDR-Strength vs A Sensitive to average Proton-Neutron-Restoring Force but insensitive to shell structure: need low-energy E1/M1 data ! Professor Dr. Norbert Pietralla TU Darmstadt Data from: A.Bohr, B.Mottelson “Nuclear Structure”

Photonuclear Reactions Separation threshold Absorption ´  ´  A´Y  gs AX Nuclear Resonance Fluorescence (NRF) Photoactivation Photodesintegration (-activation) Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Traditionally Bremsstrahlung: Kneissl,Pietralla,Zilges, J.Phys.G 32, R217 (2006). Professor Dr. Norbert Pietralla TU Darmstadt

Overview: dipole modes Spin M1 Strength Exotic Modes Orbital M1 Strength Scissors mode,… B(M1) Professor Dr. Norbert Pietralla TU Darmstadt

Scissors Mode in Deformed Nuclei (Darmstadt, 1983) classically: current loop => M1 magnetic dipole excitation electron scattering photon scattering Bohle et al., NPA 458, 205 (1986). Professor Dr. Norbert Pietralla TU Darmstadt

M1 phenomena in the nuclear valence shell Collectivity of the Scissors Mode Richter, Kneissl, von Brentano et al. Stuttgart-Darmstadt-Köln Measure of quadrupole collectivity 1+ 2+ E2 M1 N. Pietralla et al., PRC 58, 184 (1998) Professor Dr. Norbert Pietralla TU Darmstadt

S-DALINAC facility at IKP TU Darmstadt 1 2 i 1 2 Photon Experiments 10 MeV Injector: Photon Scattering / Photofission < 30 MeV Tagger: Photodesintegration / Photon Scattering Source 130 MeV Electron LINAC Electron Source Professor Dr. Norbert Pietralla TU Darmstadt

Darmstadt Low-Energy Photon Scattering Site at S-DALINAC A.Zilges E < 10 MeV Target Ge(HP) g-detectors Radiator target e- g Energie Intensity Electrons Bremsstrahlung Cu Cu < 10 MeV Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Is this really all E1 strength ? Systematics of the Pygmy Dipole Resonance Concentration around 5-7 MeV Strong fragmentation Summed strength: Scaling with N/Z ? Is this really all E1 strength ? A. Zilges et al., PLB 542 (2002) 43. S. Volz et al., NPA 779 (2006) 1. A. Zilges, contrib. to Vico Equense 07. Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Parity Measurements Principle of a Compton-Polarimeter Professor Dr. Norbert Pietralla TU Darmstadt

Modest polarisation sensitivity Better use polarized -ray beams ! Professor Dr. Norbert Pietralla TU Darmstadt

Parity Measurements with Linearly Polarized Photon Beams Azimuthal asymmetry → parity quantum no. Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt HIgS Beam Profile Professor Dr. Norbert Pietralla TU Darmstadt

Testing shell structure from M1 Spin-flip excitation Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

First ever observation of a 1+ state of 40Ar Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Duke-Stony Brook expt. high-pressure Ar gas HIgS polarized g-beam 7.7 MeV < E < 11 MeV analyzing power 50% Duke – Stony Brook data (2 examples) Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt T.C.Li, NP et al, Phys.Rev.C (2006). Professor Dr. Norbert Pietralla TU Darmstadt

Astrophysical Relevance of M1 Data Langanke et al., PRL (2004). Neutrino-cross sections Darmstadt data 54Fe Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Direct Measurement of B(GT) from Charge-Exchange Reactions Osaka-data Fujita et al., PRL(2005). Adachi et al.,PRC (2006). Professor Dr. Norbert Pietralla TU Darmstadt

250 keV Thermionic Electron Gun Polarized Beams 100 keV Polarized Electron Gun 250 keV Thermionic Electron Gun 10 MeV Injector To Experimental Hall 5 m Spatial restriction – transport of accelerator equipment Professor Dr. Norbert Pietralla TU Darmstadt

S-DALINAC Polarized INjector (SPIN) Preparation system Polarized electron gun Differential pumping stages Injector cryostat Prebuncher system Chopper Mott polarimeter Wien filter 1 m Red Hall Entrance Thermionic electron gun Injector cryostat 2 m From Gun Laser Design of polarized injector beam line finished (Prof.Dr.J.Enders) Installation begins – middle of 2007 Professor Dr. Norbert Pietralla TU Darmstadt

Polarization in the entrance channel Linear polarization (HIS) spin/parity program (since 2001) Circular polarization (HIS, S-DALINAC) parity non-conservation 20Ne, 238U bremstarget target e- g Forward-backward asymmetry ? Parity-violation Weak interaction circular -θ θ Eg bremsstrahlung spectrum Ng Pg ≤ 75% Professor Dr. Norbert Pietralla TU Darmstadt

The 20Ne case: parity mixing of yrast levels 20F, T< = 1 1- 1+ 3+ 4+ 5+ 2+ p(d5/21)n(d5/23) gs ΔE=7.5±5.7 keV “enhancement factor” 670 ± 7000 Γ(1-) ≤ 0.3 keV Γ(1+) ? 1+ 1- 11270±5 11262±3 20Ne 0+ T=1 isobaric analog states Goal: measure parity violation in simple states ! Understand effects of weak interaction microscopically ► e.g., study the parity doublet in 20Ne ! T<=0 Professor Dr. Norbert Pietralla TU Darmstadt

Generic Aspects of Nuclear Structure Heavy Atomic nucleus Two-fluid quantum system many-body system COLLECTIVITY quantum system SHELL STRUCTURE consists of two equivalent entities (protons-neutrons) ISOSPIN SYMMETRY Coexist, interplay, and compete? Study collective proton-neutron valence shell excitations ! (combine all 3 aspects) Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt From US-NSAC-charge: “Nuclear Physics with the Rare Isotope Accelerator” Themes and challenges of Modern Science Complexity out of simplicity How the world, with all its apparent complexity and diversity can be constructed out of a few elementary building blocks and their interactions Simplicity out of complexity How the world of complex systems can display such astonishing regularity and simplicity Understanding the nature of the physical universe Manipulating nature for the benefit of mankind Nuclei: Two-fluid, many-body, strongly-interacting, quantal systems provide wonderful laboratories for frontier research in all four areas Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Summary Nuclear structure physics with -ray beams is a vivid field with high discovery potential 4GLS can become a major facility in this field Needs: - energy-tunable, high-flux, polarized -ray beam from LASER-Compton backscattering All this is possible at 4GLS ! Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt

Die Valenz-Proton-Neutron Wechselwirkung Bestimmt die Entwicklung von Kollektivitaet und Kerndeformation Bildet die mikroskopische Grundlage fuer Deformations- Phasen-Uebergangsverhalten (Federman-Pittel Mechanismus) Bewirkt Besetzungszahlabhaengigkeit von Einteilchen-Energien, Energieluecken und Schalenstruktur Professor Dr. Norbert Pietralla TU Darmstadt

MSSs* at the analytical Limits Np = N =1 0+ 4+ 2+ 1+ 3+ U(5) Vibrator Fmax-1 MS multi-Phonon structure SU(3) Rotor 3+ 2+ 1+ 2+ K=1 0+ 4+ Scissors Mode 2+ A. Richter et al. TU Darmstadt, 1983 N.Pietralla et al. Univ.zu Koeln, 1999 0+ * MSSs = proton-neutron Mixed-Symmetry States Professor Dr. Norbert Pietralla TU Darmstadt

Professor Dr. Norbert Pietralla TU Darmstadt Proton-Neutron symmetrische und gemischt-symmetrische Valenzraumanregungen (schematisch/geometrisch) Deformierter Kern Rotation Sphaerischer Kern Vibration Protonen-Neutronen ausser Phase Scherenmode Protonen-Neutronen ausser Phase Gem.-sym. Vibration Professor Dr. Norbert Pietralla TU Darmstadt Animation: Robert Casperson (Yale)