EXCITON-PLASMON COUPLING AND BIEXCITONIC NONLINEARITIES IN INDIVIDUAL CARBON NANOTUBES Igor Bondarev Physics Department North Carolina Central University.

Slides:



Advertisements
Similar presentations
Wigner approach to a two-band electron-hole semi-classical model n. 1 di 22 Graz June 2006 Wigner approach to a two-band electron-hole semi-classical model.
Advertisements

Reference Bernhard Stojetz et al. Phys.Rev.Lett. 94, (2005)
ULTRAFAST CONTROL OF POLARITON STIMULATED SCATTERING IN SEMICONDUCTOR MICROCAVITIES Cornelius Grossmann1 G. Christmann, C. Coulson and J.J. Baumberg Nanophotonics.
Size-dependent recombination dynamics in ZnO nanowires
from Coupled Quantum Modes Tim Liew & Vincenzo Savona
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Phonon coupling to exciton complexes in single quantum dots D. Dufåker a, K. F. Karlsson a, V. Dimastrodonato b, L. Mereni b, P. O. Holtz a, B. E. Sernelius.
Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
Influence of gate capacitance on CNTFET performance using Monte Carlo simulation H. Cazin d'Honincthun, S. Retailleau, A. Bournel, P. Dollfus, J.P. Bourgoin*
Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.
Electronic Structure Carbon nanotubes possess large π -electronic systems similar to planar graphene 1 Reduced dimensionality around the circumference.
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Graphene: why πα? Louis Kang & Jihoon Kim
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Collective Response of Atom Clusters and Nuclei: Role of Chaos Trento April 2010 Mahir S. Hussein University of Sao Paulo.
Plasmonics in double-layer graphene
Utilizing Carbon Nanotubes to Improve Efficiency of Organic Solar Cells ENMA 490 Spring 2006.
Interpretation of the Raman spectra of graphene and carbon nanotubes: the effects of Kohn anomalies and non-adiabatic effects S. Piscanec Cambridge University.
Spin Excitations and Spin Damping in Ultrathin Ferromagnets D. L. Mills Department of Physics and Astronomy University of California Irvine, California.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
CNT – Characteristics and Applications
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
PY4007 – Quantum wires nanoparticle V1V1 V2V2 0 V C,R 1 C,R 2 C,R 3 A small conductive nanoparticle is connected via 3 tunnelling junctions to voltage.
Quasiparticle scattering and local density of states in graphene Cristina Bena (SPhT, CEA-Saclay) with Steve Kivelson (Stanford) C. Bena et S. Kivelson,
Institute of Optics, University of Rochester1 Carbon Nanotubes: theory and applications Yijing Fu 1, Qing Yu 2 1 Institute of Optics, University of Rochester.
Excitons in Single Wall Dr. Fazeli and Dr. Mozaffari
ITOH Lab. Hiroaki SAWADA
Nanotubes In The Name Of Allah excitons in single – walled carbon nanotubes nasim moradi graduate student of atomic and molEcular physics.
Ballistic transport,hiral anomaly and radiation from the electron hole plasma in graphene Ballistic transport, chiral anomaly and radiation from the electron.
Theory of Intersubband Antipolaritons Mauro F
Electrons in Solids Carbon as Example
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
1 P. Huai, Feb. 18, 2005 Electron PhononPhoton Light-Electron Interaction Semiclassical: Dipole Interaction + Maxwell Equation Quantum: Electron-Photon.
Carbon Nanotube Intramolecular Junctions. Nanotubes A graphene sheet with a hexagonal lattice…
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
WELCOME “SOME STUDIES OF OPTICLE PROPERTIES AND RAMAN SPECTROSCOPY OF CARBON NANOTUBES” Dr.SHAILENDRA KUMAR SACHIDA NAND SING PROFESSOR OF PHYSICS.
Igor Nefedov and Leonid Melnikov
Outline Damping mechanisms  Plasmons in ribbons Experimental results Graphene Nanophotonics Benasque, 2013, Mar Mar 08 Momentum dependence and losses.
Meet the transmon and his friends
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
May 9, 2005 SZFKI-MFA Carbon Nanotube Learning Seminar 1 Electron-energy loss spectroscopy in carbon nanotubes: low energy Kamarás KatalinMTA SZFKI Thanks.
First Principles Calculation of the Field Emission of Nitrogen/Boron Doped Carbon Nanotubes Hyo-Shin Ahn §, Seungwu Han †, Kwang-Ryeol Lee, Do Yeon Kim.
Looking Inside Hidden Excitons with THz Radiation Tim Gfroerer Davidson College Supported by the American Chemical Society – Petroleum Research Fund.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.
Band Structure Of Graphene Sheets and Carbon Nanotubes
1. band structure of pristine SWCNTs abstrac t abstrac t Effect of Helical Perturbation on Exciton Binding Energy in Semiconducting Carbon Nanotubes Benjamin.
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
Roberto Fuentes Badilla University of Arizona Acknowledgements: Dr. Sumit Mazumdar Dr. Zhendong Wang U.S. N.S.F.
Theoretical Solid State Physics Marvin L. Cohen and Steven G. Louie, University of California at Berkeley, DMR Carbon nanotubes possess novel properties.
Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.
Flat Band Nanostructures Vito Scarola
Electron-Phonon Coupling in graphene Claudio Attaccalite Trieste 10/01/2009.
Quasiparticle Excitations and Optical Response of Bulk and Reduced-Dimensional Systems Steven G. Louie Department of Physics, University of California.
Many-Body Effects in the Optics of Single-Wall Nanotubes
Tunable excitons in gated graphene systems
Many-Body Effects in the Optics of Single-Wall Nanotubes
of single-wall nanotube DNA hybrids
ШАПКА DNA-Single Walled Carbon Nanotube Hybrids:
EE 315/ECE 451 Nanoelectronics I
Introduction to Tight-Binding
Magneto-Photoluminescence of Carbon Nanotubes at Ultralow Temperatures
Utilizing Carbon Nanotubes to Improve Efficiency of Organic Solar Cells ENMA 490 Spring 2006.
First principles calculation on field emission of boron/nitrogen doped carbon nanotube I’m going to talk about the first principles calculation on field.
The Free Electron Fermi Gas
Quantum Mechanical Treatment of The Optical Properties
Nonlinear response of gated graphene in a strong radiation field
Tailor the Angular Dispersion of Metasurfaces
Presentation transcript:

EXCITON-PLASMON COUPLING AND BIEXCITONIC NONLINEARITIES IN INDIVIDUAL CARBON NANOTUBES Igor Bondarev Physics Department North Carolina Central University Durham, NC 27707, USA Supported by: US National Science Foundation – HRD NASA – HRNNX09AV07A ARO – PH-H Collaborators: Lilia Woods’ group University of South Florida, Tampa, USA

OUTLINE Introduction. Transverse Quantization and Interband Plasmons in CNs Exciton-Plasmon Interactions in CNs. Brief Description of the Model The Quantum Confined Stark Effect. Results of the Calculations Conclusions I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

BASIC PHYSICAL PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES Classification a1a1 a2a2 ma 1 + na 2 x y 30 0 Graphene single sheet Single-walled CN of (m,n) type I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

pp pzpz pzpz pp (m,m) – “Armchair”: metallic for all m BASIC PHYSICAL PROPERTIES OF SINGLE-WALLED CNs Brillouin zone structure (m,0) – “Zigzag”: metallic for m=3q, semiconducting for m≠3q (q=1,2,3,…) (m,n) – chiral CN: metallic or semi- conducting depending on the radius and chiral angle pp pzpz Calculated energy dependence of the CN axial conductivity I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

Experimental Electron Energy Loss Spectroscopy (EELS) Spectra of Single-Walled Carbon Nanotubes T.Pichler, M.Knupher, M.Golden, J.Fink, A.Rinzler, and R.Smalley, PRL 80, 4729 (1998) I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

EXCITON-PLASMON INTERACTIONS. THE MODEL I.V.Bondarev, L.M.Woods, and K.Tatur, PRB80,085407; Optics Commun.282,661(2009) I.V.Bondarev and H.Qasmi, Physica E 40, 2365 (2008) FORMALISM:  I.V.Bondarev & Ph.Lambin, Trends in Nanotubes Research, Nova Science, NY, 2006  I.V.Bondarev & Ph.Lambin, PRB 72, ; PRB 70,  I.V.Bondarev et al., PRL 89, The Hamiltonian: Dominant Suppressed in quasi-1D I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

Exact Diagonalization via Bogoliubov’s Canonical Transformation Dispersion Equation THE MODEL (Continued) I.V.Bondarev, L.M.Woods, and K.Tatur, ; Phys. Rev. B 80, (2009); Opt. Commun. 282, 661 (2009) I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

Plasmon DOS EELS response function EXAMPLE: (11,0) CN by non-orthogonal tight-binding simulations Approximate Solution of the Dispersion Equation (the plasmon DOS) I.V.Bondarev, L.M.Woods, and K.Tatur, Phys. Rev. B 80, (2009) I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

Approximate Solution of the Dispersion Equation (obtained by the exact diagonalization of the Hamiltonian) I.V.Bondarev, K.Tatur, and L.M.Woods, Optics Commun. 282, 661 (2009) EXAMPLE: (11,0) CN with the lowest bright exciton parameters from the Bethe-Salpeter eqn [from Spataru et al, PRL 95, ] I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

Numerical Results Exciton-Plasmon DOS & Dispersion in (10,0)& (8,0) CNs I.V.Bondarev, K.Tatur, and L.M.Woods, Optics Commun. 282, 661 (2009)

Theory of Optical Absorption Close to a Photonic DOS Resonance I.Bondarev&B.Vlahovic, PRB74, Exciton-phonon relaxation Exciton Absorption/Emission Lineshape (close to a plasmon resonance) I.V.Bondarev, L.M.Woods, and K.Tatur, Phys. Rev. B 80, (2009) I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

Numerical Results Tuning Excitons to Plasmon Resonances in (11,0) & (10,0) CNs I.V.Bondarev, L.M.Woods, and K.Tatur, Phys. Rev. B 80, (2009) Perebeinos at al., PRL94, Spataru at al., PRL95, E pl =1.50 eV E pl =1.39 eV & & Calculated Absorption/Emission Lineshapes Exciton-plasmon Rabi splitting ~ 0.1 eV –> STRONG COUPLING !!! I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

How to tune ? Quantum Confined Stark Effect in Perpendicular Electric Field I.V.Bondarev, L.M.Woods, and K.Tatur, Phys. Rev. B 80, (2009)F I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

Exciton absorption when tuned to the plasmon resonance F Longitudinal Coulomb potential with field rise Exciton- Plasmon parameters with field rise How to tune ? Quantum Confined Stark Effect in a Perpendicular Electric Field I.V.Bondarev, L.M.Woods, and K.Tatur, Phys. Rev. B 80, (2009) I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

3 rd -order Longitudinal Nonlinear Susceptibility (close to a plasmon resonance) S.Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford, 1995 I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010 Perebeinos at al., PRL94, Pedersen at al., NanoLett.5,291

The strong exciton-surface plasmon coupling effect with Rabi splitting ~ eV has been demonstrated for individual small diameter (<~1 nm) semiconducting CNs Quantum confined Stark effect with an external electro- static field applied perpendicular to the CN axis, can be used to tune the exciton energy to a plasmon resonance Predicted tunable strong exciton-plasmon coupling effect may be used to control exciton photoluminescence in CN based optoelectronic device applications in areas such as nanophotonics, nanoplasmonics, and cavity QED CONCLUSIONS I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010

I.V.Bondarev, L.M.Woods, and K.Tatur, Phys. Rev. B 80, (2009) I.V.Bondarev, K.Tatur, and L.M.Woods, Optics Commun. 282, 661 (2009) I.V.Bondarev, K.Tatur, and L.M.Woods, Optics & Spectroscopy 108, 376 (2010) I.Bondarev – PLMCN10, Cuernavaca, Mexico, April, 2010