EE360: Lecture 12 Outline Ad-Hoc Network Optimization and Analysis, Cognitive Radios Announcements HW 1 due today Progress reports due Feb. 24 Network.

Slides:



Advertisements
Similar presentations
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 11 Information.
Advertisements

Doc.: IEEE /0046r0 Submission July 2009 Ari Ahtiainen, NokiaSlide 1 A Cooperation Mechanism for Coexistence between Secondary User Networks on.
EE360: Lecture 10 Outline Capacity and Optimization of Ad Hoc Nets Announcements Revised proposals due Monday HW 1 posted, due Feb. 19 Lecture Wed will.
Multistage Spectrum Sensing for Cognitive Radios UCLA CORES.
VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
1 Cognitive Radio Networks Zhu Jieming Group Presentaion Aug. 29, 2011.
EE360: Lecture 11 Outline Cross-Layer Design and CR Announcements HW 1 due Feb. 19 Progress reports due Feb. 24 Interference alignment Feedback MIMO in.
EE360: Lecture 13 Outline Cognitive Radios and their Capacity Announcements March 5 lecture moved to March 7, 12-1:15pm, Packard 364 Poster session scheduling.
System Design for Cognitive Radio Communications
June 4, 2015 On the Capacity of a Class of Cognitive Radios Sriram Sridharan in collaboration with Dr. Sriram Vishwanath Wireless Networking and Communications.
Kuang-Hao Liu et al Presented by Xin Che 11/18/09.
Node Cooperation and Cognition in Dynamic Wireless Networks
*Sponsored in part by the DARPA IT-MANET Program, NSF OCE Opportunistic Scheduling with Reliability Guarantees in Cognitive Radio Networks Rahul.
1 Cross-Layer Design for Wireless Communication Networks Ness B. Shroff Center for Wireless Systems and Applications (CWSA) School of Electrical and Computer.
Cross Layer Design in Wireless Networks Andrea Goldsmith Stanford University Crosslayer Design Panel ICC May 14, 2003.
Introduction to Cognitive radios Part two HY 539 Presented by: George Fortetsanakis.
EE360: Lecture 7 Outline Adaptive CDMA Techniques Introduction CDMA with power control Adaptive techniques for interference reduction Rate and power adaptation.
Performance Analysis of Energy Detector in Relay Based Cognitive Radio Networks Saman Atapattu Chintha Tellambura Hai Jiang.
How to Turn on The Coding in MANETs Chris Ng, Minkyu Kim, Muriel Medard, Wonsik Kim, Una-May O’Reilly, Varun Aggarwal, Chang Wook Ahn, Michelle Effros.
STOCHASTIC GEOMETRY AND RANDOM GRAPHS FOR THE ANALYSIS AND DESIGN OF WIRELESS NETWORKS Haenggi et al EE 360 : 19 th February 2014.
Breaking Spectrum Gridlock through Cognitive and Cooperative Radios Andrea Goldsmith Stanford University Quantenna Communications, Inc MSR Cognitive Wireless.
EE360: Lecture 11 Outline Cross-Layer Design and CR Announcements HW 1 posted, due Feb. 24 at 5pm Progress reports due Feb. 29 at midnight (not Feb. 27)
EE360: Lecture 13 Outline Cognitive Radios and their Capacity Announcements Progress reports due today, HW 2 posted March 5 lecture moved to March 7, 12-1:15pm,
A FREQUENCY HOPPING SPREAD SPECTRUM TRANSMISSION SCHEME FOR UNCOORDINATED COGNITIVE RADIOS Xiaohua (Edward) Li and Juite Hwu Department of Electrical and.
Multiantenna-Assisted Spectrum Sensing for Cognitive Radio
Cooperative spectrum sensing in cognitive radio Aminmohammad Roozgard.
COGNITIVE RADIO FOR NEXT-GENERATION WIRELESS NETWORKS: AN APPROACH TO OPPORTUNISTIC CHANNEL SELECTION IN IEEE BASED WIRELESS MESH Dusit Niyato,
EE360: Lecture 12 Outline Underlay and Interweave CRs Announcements HW 1 posted (typos corrected), due Feb. 24 at 5pm Progress reports due Feb. 29 at midnight.
International Technology Alliance In Network & Information Sciences International Technology Alliance In Network & Information Sciences 1 Cooperative Wireless.
POWER CONTROL IN COGNITIVE RADIO SYSTEMS BASED ON SPECTRUM SENSING SIDE INFORMATION Karama Hamdi, Wei Zhang, and Khaled Ben Letaief The Hong Kong University.
When rate of interferer’s codebook small Does not place burden for destination to decode interference When rate of interferer’s codebook large Treating.
Future Wireless Networks Ubiquitous Communication Among People and Devices Next-generation Cellular Wireless Internet Access Wireless Multimedia Sensor.
The Symbiosis of Cognitive Radio and WMNs from “Guide to WMNs” by Sudip Misra and et al, 2009 Myungchul Kim
Cognitive Radio Networks
Overview of Research Activities Aylin Yener
A Survey of Spectrum Sensing Algorithm for Cognitive Radio Applications YaGun Wu netlab.
Ch 11. Multiple Antenna Techniques for WMNs Myungchul Kim
Collaborative Communications in Wireless Networks Without Perfect Synchronization Xiaohua(Edward) Li Assistant Professor Department of Electrical and Computer.
Congestion Control in CSMA-Based Networks with Inconsistent Channel State V. Gambiroza and E. Knightly Rice Networks Group
Covilhã, 30 June Atílio Gameiro Page 1 The information in this document is provided as is and no guarantee or warranty is given that the information is.
Advanced Spectrum Management in Multicell OFDMA Networks enabling Cognitive Radio Usage F. Bernardo, J. Pérez-Romero, O. Sallent, R. Agustí Radio Communications.
Motivation: The electromagnetic spectrum is running out Almost all frequency bands have been assigned The spectrum is expensive Services are expensive.
Simultaneous routing and resource allocation via dual decomposition AUTHOR: Lin Xiao, Student Member, IEEE, Mikael Johansson, Member, IEEE, and Stephen.
Outage in Large Wireless Networks with Spectrum Sharing under Rayleigh Fading MASc. Defence SYSC Dept., Carleton University 1 Arshdeep S. Kahlon, B.E.
Cognitive Radio
Performance of Adaptive Beam Nulling in Multihop Ad Hoc Networks Under Jamming Suman Bhunia, Vahid Behzadan, Paulo Alexandre Regis, Shamik Sengupta.
Cognitive Radios Motivation: scarce wireless spectrum
Farrukh Javed F /07-UET - PHD-CASE-CP-40 Spectrum Sensing and Allocation Techniques for Cognitive Radios.
Cooperative MIMO Paradigms for Cognitive Radio Networks
Spectrum Sensing In Cognitive Radio Networks
Wireless Networks Instructor: Fatima Naseem Computer Engineering Department, University of Engineering and Technology, Taxila.
Dynamic Spectrum Access/Management Models Exclusive-Use Model Shared-Use Model.
Chance Constrained Robust Energy Efficiency in Cognitive Radio Networks with Channel Uncertainty Yongjun Xu and Xiaohui Zhao College of Communication Engineering,
1 Architecture and Behavioral Model for Future Cognitive Heterogeneous Networks Advisor: Wei-Yeh Chen Student: Long-Chong Hung G. Chen, Y. Zhang, M. Song,
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
EE360: Lecture 13 Outline Capacity of Cognitive Radios Announcements Progress reports due Feb. 29 at midnight Overview Achievable rates in Cognitive Radios.
1 Spectrum Co-existence of IEEE b and a Networks using the CSCC Etiquette Protocol Xiangpeng Jing and Dipankar Raychaudhuri, WINLAB Rutgers.
A discussion on channel sensing techniques By James Xu.
Advanced Wireless Networks
An Enhancement of WirelessHART Protocol
Cognitive Radio Based 5G Wireless Networks
Channel Allocation (MAC)
PERFORMANCE ANALYSIS OF SPECTRUM SENSING USING COGNITIVE RADIO
User Interference Effect on Routing of Cognitive Radio Ad-Hoc Networks
Null Space Learning in MIMO Systems
Cognitive Radio Networks
Spectrum Sharing in Cognitive Radio Networks
Efficient QoS for secondary users in cognitive radio systems
Application Metrics and Network Performance
Information Sciences and Systems Lab
Presentation transcript:

EE360: Lecture 12 Outline Ad-Hoc Network Optimization and Analysis, Cognitive Radios Announcements HW 1 due today Progress reports due Feb. 24 Network Utility Maximization New Analysis Tools Consummating Unions: Control and Networks Introduction to cognitive radios Underlay cognitive radios Spread spectrum MIMO Interweave cognitive radio s Basic premise Spectrum sensing

Approaches to Cross-Layer Resource Allocation* Network Optimization Dynamic Programming State Space Reduction *Much prior work is for wired/static networks Distributed Optimization Distributed Algorithms Network Utility Maximization Wireless NUM Multiperiod NUM Game Theory Mechanism Design Stackelberg Games Nash Equilibrium

Network Utility Maximization Maximizes a network utility function Assumes Steady state Reliable links Fixed link capacities Dynamics are only in the queues routing Fixed link capacity flow k U 1 (r 1 ) U 2 (r 2 ) U n (r n ) RiRi RjRj

Wireless NUM Extends NUM to random environments Network operation as stochastic optimization algorithm Physical Layer Upper Layers Physical Layer Upper Layers Physical Layer Upper Layers Physical Layer Upper Layers Physical Layer Upper Layers user video Stolyar, Neely, et. al.

WNUM Policies Control network resources Inputs: Random network channel information G k Network parameters Other policies Outputs: Control parameters Optimized performance, that Meet constraints Channel sample driven policies

Example: NUM and Adaptive Modulation Policies Information rate Tx power Tx Rate Tx code rate Policy adapts to Changing channel conditions Packet backlog Historical power usage Data Physical Layer Buffer Upper Layers Physical Layer Buffer Upper Layers Block codes used

Rate-Delay-Reliability Policy Results

Beyond WNUM WNUM Limitations Adapts to channel and network dynamics Cross-layer optimization Limited to elastic traffic flows Multi-period NUM extends WNUM Multi-period resource (e.g., flow rate, power) allocation Resources (e.g., link capacities, channel states) vary randomly Maximize utility (or minimize cost) that reflects different weights (priorities), desired/required target levels, and averaging time scales for different flows Traffic can have defined start and stop times Traffic QoS metrics can Be met General capacity regions can be incorporated Much work by Stephen Boyd and his students

Reduced-Dimension Stochastic Control Reduced-State Sampling and Learning Random Network Evolution Changes Stochastic Control Stochastic Optimization Resource Management

Game theory Coordinating user actions in a large ad-hoc network can be infeasible Distributed control difficult to derive and computationally complex Game theory provides a new paradigm Users act to “win” game or reach an equilibrium Users heterogeneous and non-cooperative Local competition can yield optimal outcomes Dynamics impact equilibrium and outcome Adaptation via game theory

New Analysis Tools: Large System Limits and Stochastic Geometry As system dimensions go to infinity, results from random matrix theory can be used, e.g. MIMO systems with large number of transmit and receive antennas Analysis of CDMA systems with large spreading factors and a large number of users Ad hoc networks with a large number of nodes (scaling laws) Stochastic geometry (Milind’s presentation) Wireless networks are limited by interference. Interference depends on system design and environment Stochastic Geometry is an analysis tool based on random graph models averaged over multiple spatial realizations Has been used to determine SINR distributions, outage probability, and spectral efficiency in ad-hoc/cellular networks

Transmitter/ Controller Channel Receiver/ System Feedback Channel Feedback channels and stochastic control Multihop networks with imperfect feedback Controller System Controller Distributed Control with imperfect feedback Connections

Limitations in theory of ad hoc networks today Shannon capacity pessimistic for wireless channels and intractable for large networks Wireless Information Theory Optimization Theory B. Hajek and A. Ephremides, “Information theory and communications networks: An unconsummated union,” IEEE Trans. Inf. Theory, Oct –Little cross-disciplinary work spanning these fields –Optimization techniques applied to given network models, which rarely take into account fundamental network capacity or dynamics Wireless Network Theory –Large body of wireless (and wired) network theory that is ad-hoc, lacks a basis in fundamentals, and lacks an objective success criteria.

Consummating Unions When capacity is not the only metric, a new theory is needed to deal with nonasymptopia (i.e. delay, random traffic) and application requirements Shannon theory generally breaks down when delay, error, or user/traffic dynamics must be considered Fundamental limits are needed outside asymptotic regimes Optimization, game theory, and other techniques provide the missing link Wireless Information Theory Wireless Network Theory Optimization Game Theory,… Menage a Trois

CR Motivation Scarce Wireless Spectrum and Expensive $$$

Cognition Radio Introduction Cognitive radios can support new wireless users in existing crowded spectrum Without degrading performance of existing users Utilize advanced communication and signal processing techniques Coupled with novel spectrum allocation policies Technology could Revolutionize the way spectrum is allocated worldwide Provide sufficient bandwidth to support higher quality and higher data rate products and services

What is a Cognitive Radio? Cognitive radios (CRs) intelligently exploit available side information about the (a)Channel conditions (b)Activity (c)Codebooks (d) Messages of other nodes with which they share the spectrum

Cognitive Radio Paradigms Underlay Cognitive radios constrained to cause minimal interference to noncognitive radios Interweave Cognitive radios find and exploit spectral holes to avoid interfering with noncognitive radios Overlay Cognitive radios overhear and enhance noncognitive radio transmissions Knowledge and Complexity

Underlay Systems Cognitive radios determine the interference their transmission causes to noncognitive nodes Transmit if interference below a given threshold The interference constraint may be met Via wideband signalling to maintain interference below the noise floor (spread spectrum or UWB) Via multiple antennas and beamforming NCR IPIP CR

Underlay Challenges Measurement challenges Measuring interference at primary receiver Measuring direction of primary node for beamsteering Policy challenges Underlays typically coexist with licensed users Licensed users paid $$$ for their spectrum l Licensed users don’t want underlays l Insist on very stringent interference constraints l Severely limits underlay capabilities and applications

Ultrawideband Radio (UWB) Uses 7.5 Ghz of “free spectrum” (underlay) UWB is an impulse radio: sends pulses of tens of picoseconds( ) to nanoseconds (10 -9 ) Duty cycle of only a fraction of a percent A carrier is not necessarily needed Uses a lot of bandwidth (GHz) High data rates, up to 500 Mbps, very low power Multipath highly resolvable: good and bad Failed to achieve commercial success

Null-Space Learning in MIMO CR Networks Performance of CRs suffers from interference constraint In MIMO systems, secondary users can utilize the null space of the primary user’s channel without interfering Challenge is for CR to learn and then transmit within the null space of the H 12 matrix We develop blind null-space learning algorithms based on simple energy measurements with fast convergence

Problem Statement Consider a single primary user, User 1 Objective: Learn null space null(H 1j ), j  1 with minimal burden on the primary user Propose two schemes: Passive primary user scheme: Primay user oblivious to secondary system Active primary user scheme: Minimal cooperation (no handshake or synchronization). Faster learning time.

System Setup Note: q(t) can be any monotonic function of y 2 (t) Energy is easily measurable at secondary transmitter

Learning Process The SU’s learns the null space of H 12 by inserting a series of input symbols and measuring q(n)=f k (  ). The only information that can be extracted is whether q(n) increases or decreases Is this sufficient to learn the null space of H 12 ?

Yes! The problem is equivalent to a blind Jacobi EVD decomposition The theorem ensures that Jacobi can be carried out by a blind 2D optimization in which every local minimum is a global minimum.

Can Bound Search Accuracy More relaxed constraints on PU interference leads to better performance of the secondary user This technique requires no cooperation with PU If PU transmits its interference plus noise power, can speed up convergence significantly The proposed learning technique also provides a novel spatial division multiple access mechanism

Performance

Summary of Underlay MIMO Systems Null-space learning in MIMO systems can be exploited for cognitive radios Blind Jacobi techniques provide fast convergence with very limited information These ideas may also be applied to white space radios

Interweave Systems: Avoid interference Measurements indicate that even crowded spectrum is not used across all time, space, and frequencies Original motivation for “cognitive” radios (Mitola’00) These holes can be used for communication Interweave CRs periodically monitor spectrum for holes Hole location must be agreed upon between TX and RX Hole is then used for opportunistic communication with minimal interference to noncognitive users

Interweave Challenges Spectral hole locations change dynamically Need wideband agile receivers with fast sensing l Compresses sensing can play a role here Spectrum must be sensed periodically TX and RX must coordinate to find common holes Hard to guarantee bandwidth Detecting and avoiding active users is challenging Fading and shadowing cause false hole detection Random interference can lead to false active user detection Policy challenges Licensed users hate interweave even more than underlay Interweave advocates must outmaneuver incumbents

White Space Detection White space detection can be done by a single sensor or multiple sensors With multiple sensors, detection can be distributed or done by a central fusion center Known techniques for centralized or distributed detection can be applied

Detection Errors Missed detection of primary user activity causes interference to primary users. False detection of primary user activity (false alarm) misses spectrum opportunities There is typically a tradeoff between these two (conservative vs. aggressive)

Summary Techniques outside traditional communications theory needed to optimize ad-hoc networks Wireless spectrum is scarce: cognitive radios hold promise to alleviate spectrum shortage Interference constraints have hindered the performance of underlay systems Exploiting the spatial dimension compelling Interweave CRs find and exploit free spectrum: Primary users concerned about interference Much room for innovation

Student Presentation "Stochastic geometry and random graphs for the analysis and design of wireless networks" By Haenggi, Andrews, Baccelli, Dousse, and Franceschetti, Appeared in J. Selected Areas in Communications, September Presented by Milind