Methods of Proof Rosen 1.7, 1.8 Lecture 4: Sept, 2019.

Slides:



Advertisements
Similar presentations
Methods of Proof. Methods of Proof The Vicky Pollard Proof Technique Prove that when n is even n2 is even. Assume n is 0, then n2 is 0, and that is.
Advertisements

With examples from Number Theory
Discrete Math Methods of proof 1.
Introduction to Proofs
1 In this lecture  Number Theory ● Rational numbers ● Divisibility  Proofs ● Direct proofs (cont.) ● Common mistakes in proofs ● Disproof by counterexample.
Mathematical Induction II Lecture 14: Nov
Copyright © Cengage Learning. All rights reserved. CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION.
Basic properties of the integers
Induction Lecture 5: Sep 21 (chapter of the book and chapter of the notes)
More Number Theory Proofs Rosen 1.5, 3.1. Prove or Disprove If m and n are even integers, then mn is divisible by 4. The sum of two odd integers is odd.
Logic and Proof. Argument An argument is a sequence of statements. All statements but the first one are called assumptions or hypothesis. The final statement.
Elementary Number Theory and Methods of Proof. Basic Definitions An integer n is an even number if there exists an integer k such that n = 2k. An integer.
CSE115/ENGR160 Discrete Mathematics 01/31/12 Ming-Hsuan Yang UC Merced 1.
CSE115/ENGR160 Discrete Mathematics 02/01/11
CMSC 250 Discrete Structures Number Theory. 20 June 2007Number Theory2 Exactly one car in the plant has color H( a ) := “ a has color”  x  Cars –H(
Copyright © Zeph Grunschlag,
Methods of Proof Lecture 4: Sep 16 (chapter 3 of the book)
Methods of Proof & Proof Strategies
Introduction to Proofs
Mathematics Review Exponents Logarithms Series Modular arithmetic Proofs.
Introduction to Proofs
1 Methods of Proof CS/APMA 202 Epp, chapter 3 Aaron Bloomfield.
Methods of Proof. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical theorems. Direct.
Section 1.8. Section Summary Proof by Cases Existence Proofs Constructive Nonconstructive Disproof by Counterexample Nonexistence Proofs Uniqueness Proofs.
10/17/2015 Prepared by Dr.Saad Alabbad1 CS100 : Discrete Structures Proof Techniques(1) Dr.Saad Alabbad Department of Computer Science
1 Introduction to Abstract Mathematics Chapter 3: Elementary Number Theory and Methods of Proofs Instructor: Hayk Melikya Direct.
1 Sections 1.5 & 3.1 Methods of Proof / Proof Strategy.
Methods of Proof Lecture 3: Sep 9. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical.
Fall 2008/2009 I. Arwa Linjawi & I. Asma’a Ashenkity 11 The Foundations: Logic and Proofs Introduction to Proofs.
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications Kenneth H. Rosen (5 th Edition) Chapter 3 The Foundations: Logic and Proof,
Method of proofs.  Consider the statements: “Humans have two eyes”  It implies the “universal quantification”  If a is a Human then a has two eyes.
CS104:Discrete Structures Chapter 2: Proof Techniques.
1 CMSC 250 Chapter 3, Number Theory. 2 CMSC 250 Introductory number theory l A good proof should have: –a statement of what is to be proven –"Proof:"
Mathematical Induction I Lecture 5: Sep 20 (chapter of the textbook and chapter of the course notes)
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
Methods of Proof Lecture 4: Sep 20 (chapter 3 of the book, except 3.5 and 3.8)
Section 1.7. Section Summary Mathematical Proofs Forms of Theorems Direct Proofs Indirect Proofs Proof of the Contrapositive Proof by Contradiction.
Dr Nazir A. Zafar Advanced Algorithms Analysis and Design Advanced Algorithms Analysis and Design By Dr. Nazir Ahmad Zafar.
Proof Techniques CS160/CS122 Rosen: 1.5, 1.6, 1.7.
Lecture 2: Proofs and Recursion. Lecture 2-1: Proof Techniques Proof methods : –Inductive reasoning Lecture 2-2 –Deductive reasoning Using counterexample.
Induction (chapter of the book and chapter of the notes)
Chapter 1 Logic and Proof.
Hubert Chan (Chapters 1.6, 1.7, 4.1)
The Foundations: Logic and Proofs
CSE15 Discrete Mathematics 02/01/17
CSE15 Discrete Mathematics 02/08/17
Indirect Argument: Contradiction and Contraposition
Proof methods We will discuss ten proof methods: Direct proofs
Advanced Algorithms Analysis and Design
Mathematical Induction II
Methods of Proof CS 202 Epp, chapter 3.
Predicate Calculus Validity
Hubert Chan (Chapters 1.6, 1.7, 4.1)
Gray Code Can you find an ordering of all the n-bit strings in such a way that two consecutive n-bit strings differed by only one bit? This is called the.
Explorations in Artificial Intelligence
Indirect Argument: Contradiction and Contraposition
The Foundations: Logic and Proofs
CS201: Data Structures and Discrete Mathematics I
Induction and recursion
CS 220: Discrete Structures and their Applications
CS 220: Discrete Structures and their Applications
Section 2.1 Proof Techniques Introduce proof techniques:   o        Exhaustive Proof: to prove all possible cases, Only if it is about a.
Methods of Proof Rosen 1.7, 1.8 Lecture 4: Sept 24, 25.
Elementary Number Theory & Proofs
Indirect Argument: Contradiction and Contraposition
Advanced Analysis of Algorithms
Foundations of Discrete Mathematics
Induction Rosen 5 Lecture 8: Oct 29, 30.
Introduction to Proofs
Agenda Proofs (Konsep Pembuktian) Direct Proofs & Counterexamples
Presentation transcript:

Methods of Proof Rosen 1.7, 1.8 Lecture 4: Sept, 2019

Some terminology Theorem: a mathematical statement that can be shown to be true Proposition: less important theorem Axiom (postulate): a statement that is assumed to be true Lemma: less important theorem that is helpful in the proof of other results Corollary: a theorem that can be established directly from a theorem that has been proved Conjecture: a statement proposed to be true, but not proven yet

Basic Definitions An integer n is an even number if there exists an integer k such that n = 2k. An integer n is an odd number if there exists an integer k such that n = 2k+1.

Proving an Implication Goal: If P, then Q. (P implies Q) Method 1: Write assume P, then show that Q logically follows. Claim: If , then Reasoning: When x=0, it is true. When x grows, 4x grows faster than x3 in that range. Proof: When

Direct Proofs The sum of two even numbers is even. Proof x = 2m, y = 2n x+y = 2m+2n = 2(m+n) The product of two odd numbers is odd. Proof x = 2m+1, y = 2n+1 xy = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn+m+n) + 1.

Divisibility a “divides” b (a|b): b = ak for some integer k 5|15 because 15 = 35 n|0 because 0 = n0 1|n because n = 1n n|n because n = n1 A number p > 1 with no positive integer divisors other than 1 and itself is called a prime. Every other number greater than 1 is called composite. 2, 3, 5, 7, 11, and 13 are prime, 4, 6, 8, and 9 are composite.

Simple Divisibility Facts 1. If a | b, then a | bc for all c. 2. If a | b and b | c, then a | c. 3. If a | b and a | c, then a | sb + tc for all s and t. 4. For all c ≠ 0, a | b if and only if ca | cb. Proof of (1) a | b b = ak bc = ack bc = a(ck) a|bc a “divides” b (a|b): b = ak for some integer k

Simple Divisibility Facts 1. If a | b, then a | bc for all c. 2. If a | b and b | c, then a | c. 3. If a | b and a | c, then a | sb + tc for all s and t. 4. For all c ≠ 0, a | b if and only if ca | cb. Proof of (2) a | b => b = ak1 b | c => c = bk2 => c = ak1k2 => a|c a “divides” b (a|b): b = ak for some integer k

Simple Divisibility Facts 1. If a | b, then a | bc for all c. 2. If a | b and b | c, then a | c. 3. If a | b and a | c, then a | sb + tc for all s and t. 4. For all c ≠ 0, a | b if and only if ca | cb. Proof of (3) a | b => b = ak1 a | c => c = ak2 sb + tc = sak1 + tak2 = a(sk1 + tk2) => a|(sb+tc) a “divides” b (a|b): b = ak for some integer k

Proving an Implication Goal: If P, then Q. (P implies Q) Method 1: Write assume P, then show that Q logically follows. Claim: If r is irrational, then √r is irrational. How to begin with? What if I prove “If √r is rational, then r is rational”, is it equivalent? Yes, this is equivalent; proving “if P, then Q” is equivalent to proving “if not Q, then not P”.

Rational Number R is rational  there are integers a and b such that numerator and b ≠ 0. denominator Is 0.281 a rational number? Is 0 a rational number? If m and n are non-zero integers, is (m+n)/mn a rational number? Is the sum of two rational numbers a rational number? Is x=0.12121212…… a rational number? Yes, 281/1000 Yes, 0/1 Yes Yes, a/b+c/d=(ad+bc)/bd Note that 100x-x=12, and so x=12/99.

Proving an Implication Goal: If P, then Q. (P implies Q) Method 2: Prove the contrapositive, i.e. prove “not Q implies not P”. Claim: If r is irrational, then √r is irrational. Proof: We shall prove the contrapositive – “if √r is rational, then r is rational.” Since √r is rational, √r = a/b for some integers a,b. So r = a2/b2. Since a,b are integers, a2,b2 are integers. Therefore, r is rational. Q.E.D.

Proving an “if and only if” Goal: Prove that two statements P and Q are “logically equivalent”, that is, one holds if and only if the other holds. Example: An integer is even if and only if the its square is even. Method 1: Prove P implies Q and Q implies P. Method 1’: Prove P implies Q and not P implies not Q. Method 2: Construct a chain of if and only if statement.

Proof by Contraposition An integer is even if and only if the its square is even. Method 1: Prove P implies Q and Q implies P. Statement: If m is even, then m2 is even Proof: m = 2k m2 = 4k2 Statement: If m2 is even, then m is even Proof: m2 = 2k m = √(2k) ??

Proof by Contraposition An integer is even if and only if the its square is even. Method 1’: Prove P implies Q and not P implies not Q. Statement: If m2 is even, then m is even Contrapositive: If m is odd, then m2 is odd. Proof (the contrapositive): Since m is an odd number, m = 2k+1 for some integer k. So m2 = (2k+1)2 = (2k)2 + 2(2k) + 1 = 2(2k2 + 2k) + 1 So m2 is an odd number.

To prove P, you prove that not P would lead to ridiculous result, Proof by Contradiction To prove P, you prove that not P would lead to ridiculous result, and so P must be true. You are working as a clerk. If you have won Mark 6, then you would not work as a clerk. You have not won Mark 6.

Proof (by contradiction): Theorem: is irrational. Proof (by contradiction): Suppose was rational. Choose m, n integers without common prime factors (always possible) such that Show that m and n are both even, thus having a common factor 2, a contradiction!

Proof (by contradiction): Theorem: is irrational. Proof (by contradiction): Want to prove both m and n are even. so m is even. so can assume so n is even.

Divisibility by a Prime Theorem. Any integer n > 1 is divisible by a prime number. Let n be an integer. If n is a prime number, then we are done. Otherwise, n = ab, both are smaller than n. If a or b is a prime number, then we are done. Otherwise, a = cd, both are smaller than a. If c or d is a prime number, then we are done. Otherwise, repeat this argument, since the numbers are getting smaller and smaller, this will eventually stop and we have found a prime factor of n. Idea of induction.

Infinitude of the Primes Theorem. There are infinitely many prime numbers. Proof (by contradiction): Let p1, p2, …, pN be all the primes. Consider p1p2…pN + 1. Claim: if p divides a, then p does not divide a+1. Proof (by contradiction): a = cp for some integer c a+1 = dp for some integer d => 1 = (d-c)p, contradiction because p>=2. So none of p1, p2, …, pN can divide p1p2…pN + 1, a contradiction.

Proof by Cases e.g. want to prove a nonzero number always has a positive square. x is positive or x is negative if x is positive, then x2 > 0. if x is negative, then x2 > 0. x2 > 0. A proof by cases must cover all possible cases that arise in a theorem

The Square of an Odd Integer Idea 0: find counterexample. 32 = 9 = 8+1, 52 = 25 = 3x8+1 …… 1312 = 17161 = 2145x8 + 1, ……… Idea 1: prove that n2 – 1 is divisible by 8. n2 – 1 = (n-1)(n+1) = ??… Idea 2: consider (2k+1)2 (2k+1)2 = 4k2+4k+1 = 4(k2+k)+1 If k is even, then both k2 and k are even, and so we are done. If k is odd, then both k2 and k are odd, and so k2+k even, also done. So n2 = (2k+1)2 = 4(2m)+1

Proof by Cases Show that there are no solutions in integers x and y of x2 + 3y2 = 8. When |x|  3, x2  8 When |y|  2, 3y2  8 This leaves possible x = {−2, −1, 0, 1, 2} and possible y = {−1, 0, 1} Possible x2 are 0, 1, 4 and possible 3y2 are 0 and 3 Largest sum of possible values for x2 and 3y2 is 7 Consequently, it is impossible for x2 + 3y2 = 8 to hold when x and y are integers

Mistakes in proofs What is wrong with this proof “1=2”? a=b (given) a2=ab (multiply both sides of 1 by a) a2-b2 =ab-b2 (subtract b2 from both sides of 2) (a-b)(a+b)=b(a-b) (factor both sides of 3) a+b=b (divide both sides of 4 by a-b) 2b=b (replace a by b in 5 as a=b and simply) 2=1 (divide both sides of 6 by b)

What is wrong with this proof? “Theorem”: If n2 is positive, then n is positive “Proof”: Suppose n2 is positive. As the statement “If n is positive, then n2 is positive” is true, we conclude that n is positive The mistake occurs when one or more steps of a proof are based on the truth of the statement being proved Counterexample: n = -1

In Summary Direct Proofs (cases/induction) H1 ∧ H2 ∧ ⋯ ∧ Hn ⟹ C Proofs of the Contrapositive ¬C ⟹ (H1 ∧ H2 ∧ ⋯ ∧ Hn) Proofs by Contradiction H1 ∧ H2 ∧ ⋯ ∧ Hn ∧ ¬C ⟹ a contradiction

Challenge for the Bored – Rational vs Irrational Question: If a and b are irrational, can ab be rational?? We know that √2 is irrational, what about √2√2 ?