Calculating Acceleration

Slides:



Advertisements
Similar presentations
Freefall Motion Notes Any object near the surface of the Earth experiences the pull of gravity. If released from rest, the object will fall freely toward.
Advertisements

(c) McGraw Hill Ryerson Calculating Acceleration The acceleration of an object is dependent upon the change in velocity and the time required.
Airbags cause the person to slow down in a longer period of time compared to hitting a solid object, such as the dashboard. This increased time results.
(c) McGraw Hill Ryerson Calculating Acceleration.
9.2 Calculating Acceleration
(c) McGraw Hill Ryerson Calculating Acceleration The relationship of acceleration, change in velocity, and time interval is given by the equation:
PHYSICAL SCIENCE MOTION
Notes: 11.3 Acceleration.
Ball thrown upwards and caught at same height on way down 0 A B C D Displacement Time 0 A B C D Velocity Time Upwards is positive, Initial displacement.
Free falling …. ACCELERATION DUE TO GRAVITY All bodies in free fall (that is no air resistance) near the Earth's surface have the same downward acceleration.
Air resistance is a form of friction that acts to slow down any object moving in the air. Air resistance is a force that gets larger as an object moves.
Chapter 2 Preview Objectives Changes in Velocity
Acceleration (a vector quantity) is defined as the rate of change of velocity. It has units of m/s 2 Acceleration can be positive, negative, or zero. An.
(c) McGraw Hill Ryerson Calculating Acceleration  Increasing the stopping time decreases the acceleration  Decreasing the stopping time increases.
You are going 25 m/s North on I-35. You see a cop parked on the side of the road. What is his velocity related to you. A.25 m/s South B.25 m/s North C.0.
Chapter Assessment Questions
Acceleration Chapter 3 Section 1.
Physics 521 Section 2.4 and Chapter 3.  Acceleration is the rate at which the velocity of an object changes.  When the velocity changes ( ) during some.
Free Fall Free fall: when an object is only affected by gravity
Section 3 Falling ObjectsFalling Objects Section 3 Falling Objects Chapter 2.
CHAPTER 3 ACCELERATION AND FREE FALL. ACCELERATION.
Gravity and Acceleration Objects near the surface of Earth fall to Earth due to the force of gravity.  Gravity is a pulling force that acts between two.
Chapter 6 Forces in Motion.
Free Fall and Gravity. Acceleration Review 1. A biker is traveling at 12.0 m/sec and speeds up to pass a car to 18.5 m/sec in 1.5 seconds. What is the.
Calculating Acceleration
Chapter 6 Forces and Motion.
< BackNext >PreviewMain Gravity and Falling Objects Gravity and Acceleration Objects fall to the ground at the same rate because the acceleration due to.
Chapter 3 Accelerated Motion. Introduction In this chapter we will examine acceleration and define it in terms of velocity. We will also solve problems.
Chapter 2 Section 3 falling Objects. Objectives  Relate the motion of a freely falling body to motion with constant acceleration.  Calculate displacement,
9.2 – Calculating Acceleration The acceleration of an object depends on the change in velocity and the time required to change the velocity. When stopping.
1 Physics Chapter 2 Motion in One Dimension Topics:Displacement & Velocity Acceleration Falling Objects.
Chapter 2 Motion in ONE dimension. Displacement This chapter we are only doing to study motion in one direction. This chapter we are only doing to study.
Section 1 Displacement and Velocity Chapter 2 One Dimensional Motion To simplify the concept of motion, we will first consider motion that takes place.
CHAPTER 2 Motion in One Dimension. Displacement and Velocity Describe motion in terms of frame of reference, displacement, time, and velocity. Calculate.
9.2 Calculating Acceleration The acceleration of an object depends on the change in velocity and the time required to change the velocity. When stopping.
Free Fall Think about an apple falling from a tree. – It starts at rest and gains speed as it falls, or accelerates. Gravity causes the apple to accelerate.
9.1 Describing Acceleration
3.3 Uniform Acceleration and Free Fall
Gravity and Acceleration
Acceleration and Free Fall
Methods of Motion -Acceleration
Section 3 Falling Objects
Acceleration Physics 1-D Motion.
9.2 Calculating Acceleration
9.2 Calculating Acceleration
9.2 Calculating Acceleration
9.2 Calculating Acceleration
Calculating Acceleration
9.2 Calculating Acceleration
9.2 Calculating Acceleration
9.2 Calculating Acceleration
Motion in a Straight Line
Calculating Acceleration
Acceleration Continued!!
S-9 Define the term motion. Give an example of something in motion.
9.2 Calculating Acceleration
Acceleration.
9.2 Calculating Acceleration
Free Fall Free fall: when an object is only affected by gravity
ACCELERATION.
9.2 Calculating Acceleration
9.2 Calculating Acceleration
S-9 Define the term motion. Give an example of something in motion.
The slope of a velocity-time graph is ______________________.
Calculating Acceleration
Acceleration.
One Dimensional Motion
9.2 Calculating Acceleration
9.1 – Describing Acceleration
Presentation transcript:

Calculating Acceleration Chapter 9.2 Calculating Acceleration

Calculating Acceleration The acceleration of an object depends on the change in velocity and the time required to change the velocity. When stopping a moving object, the relationship between time and acceleration is: Increasing the stopping time decreases the acceleration. Decreasing the stopping time increases the acceleration.

Calculating Acceleration Airbags cause the person to slow down in a longer period of time compared to hitting a solid object, such as the dashboard. This increased time results in a smaller deceleration.

Velocity-Time Graphs The motion of an object with uniform motion can be represented by a position-time graph. The motion of an object with a changing velocity can be represented by a velocity-time graph. The slope of a velocity-time graph is average acceleration. Acceleration is measured in m/s2.

Velocity-Time Graphs The slope of a velocity-time graph is the average acceleration of the object.

Provincial Exam Question

Determining Motion from a Velocity-Time Graph A velocity-time graph can be analyzed to describe the motion of an object. Positive slope (positive acceleration) – object’s velocity is increasing in the positive direction Zero slope (zero acceleration) – object’s velocity is constant Negative slope (negative acceleration) – object’s velocity is decreasing in the positive direction or the object’s velocity is increasing in the negative direction

Determining Motion from a Velocity-Time Graph State during which time interval: the acceleration was zero. (t1 to t2) the acceleration was negative. (t2 to t3) the acceleration was positive. (0 to t1) the object was increasing it’s velocity north. (0 to t1) the object was decreasing it’s velocity north. (t2 to t3) the object was moving at a constant velocity north. (t1 to t2)

Provincial Exam Question

Provincial Exam Question

Calculating Acceleration Example A pool ball travelling at 2.5 m/s towards the cushion bounces off at 1.5 m/s. If the ball was in contact with the cushion for 0.20 s, what is the ball’s acceleration? (Assume towards the cushion is the positive direction.) 20 m/s2 away from the cushion

Provincial Exam Question

Calculating Change in Velocity Example: A car accelerates from rest at 3.0 m/s2 forward for 5.0 s. What is the velocity of the car at the end of 5.0 s? 15 m/s forward

Provincial Exam Question

Calculating Time ∆t = ∆ν a Example: A train is travelling east at 14 m/s. How long would it take to increase its velocity to 22 m/s east, if it accelerated at 0.50 m/s2 east? Assign east direction positive (+). 16s

Provincial Exam Question

Check Your Understanding Practice Problems p. 397 A truck starting from rest accelerates uniformly to 18 m/s [W] in 4.5 s. What is the truck’s acceleration? (4.0 m/s2 [W]) A toboggan moving 5.0 m/s forward decelerates backward at -0.40 m/s2 for 10 s. What is the toboggan’s velocity at the end of the 10 s? (1.0 m/s forward) How much time does it take a car travelling south at 12 m/s to increase its velocity to 26 m/s south if it accelerates at 3.5 m/s2 south? (4.0 s)

Gravity & Acceleration Objects near the surface of Earth fall to Earth due to the force of gravity. Gravity is a pulling force that acts between two or more masses. Air resistance is a friction-like force that opposes the motion of objects that move through the air. Ignoring air resistance, all objects will accelerate towards Earth at the same rate. The acceleration due to gravity is 9.8 m/s2 downward.

Gravity & Acceleration

Acceleration due to Gravity To analyze situation where objects are accelerating due to gravity, use the acceleration equation, where: a = 9.8 m/s2 downward Example: Suppose a rock falls from the top of a cliff. What is the change in velocity of the rock after it has fallen for 1.5 s? Assign “down” as negative (-). 15 m/s down

Provincial Exam Question

Check Your Understanding Practice Problems p. 400 What is the change in velocity of a brick that falls for 3.5 s? (34 m/s downward) A ball is thrown straight up into the air at 14 m/s. How long does it take for the ball to slow down to an upward velocity of 6.0 m/s? (0.82 s) A rock is thrown downwards with an initial velocity of 8.0 m/s. What is the velocity of the rock after 1.5 s? (23 m/s downward) Take the Section 9.2 Quiz