The status and performance of ESSnuSB

Slides:



Advertisements
Similar presentations
Sergio Palomares-Ruiz June 22, 2005 Super-NO A Based on O. Mena, SPR and S. Pascoli hep-ph/ a long-baseline neutrino experiment with two off-axis.
Advertisements

Precision Neutrino Oscillation Measurements & the Neutrino Factory Scoping Study for a Future Accelerator Neutrino Complex – Discussion Meeting Steve Geer,
Accelerator based Neutrino program around the world 1. Europe: Neutrino platform at CERN ESS second maximum? 2. Japan: T2K and HyperK status 3. USA: LBNF.
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Near detectors and systematics IDS-NF plenary meeting at TIFR, Mumbai October 13, 2009 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA.
Neutrino Oscillation Physics at a Neutrino Factory Rob Edgecock RAL/CERN-AB.
Atmospheric Neutrino Anomaly
Measuring δ CP at the second ν oscillation maximum Win2015 Conference in Heidelberg 12 June 2015 Tord Ekelof, Uppsala University 1 ESSνSB
ESSnuSB Project for Leptonic CP Violation Discovery based on the European Spallation Source Linac NOW 2014, 10/9E. Wildner, CERN 2 Elena WILDNER CERN for.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 20 August 2013M. Dracos.
Long Baseline Experiments at Fermilab Maury Goodman.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Road Map of Future Neutrino Physics A personal view Ken Peach Round Table discussion at the 6 th NuFACT Workshop Osaka, Japan 26 th July – 1 st August.
Alain Blondel. AIDA-Neutrino meeting AIDA Neutrino detector studies 1. News from the neutrino scene 2. Beam requirements for AIDA 3. Discuss.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
Counting Electrons to Measure the Neutrino Mass Hierarchy J. Brunner 17/04/2013 APC.
Extrapolation Neutrino Flux measured at Near Detector to the Far Detector Near Detector Workshop, CERN, 30 July 2011 Paul Soler, Andrew Laing.
Staging of a Neutrino Factory (and beyond…) Mark Palmer Director, US Muon Accelerator Program NuFACT 2014, Glasgow, August 25-30, 2014 NUFACT2014 XVIth.
Yoshihisa OBAYASHI, Oct. Neutrino Oscillation Experiment between JHF – Super-Kamiokande Yoshihisa OBAYASHI (Kamioka Observatory, ICRR)
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 10 September 2013M. Dracos.
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
Michel Gonin – Ecole Polytechnique – France : SUPER NOVA SN1987A Super-Kamiokande Introduction neutrino oscillations mixing matrices Introduction.
2 July 2002 S. Kahn BNL Homestake Long Baseline1 A Super-Neutrino Beam from BNL to Homestake Steve Kahn For the BNL-Homestake Collaboration Presented at.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Future neutrino oscillation experiments J.J. Gómez-Cadenas U. Valencia/KEK Original results presented in this talk based on work done in collaboration.
1 Study of physics impacts of putting a far detector in Korea with GLoBES - work in progress - Eun-Ju Jeon Seoul National University Nov. 18, 2005 International.
A monochromatic neutrino beam for  13 and  J. Bernabeu U. de Valencia and IFIC NO-VE III International Workshop on: "NEUTRINO OSCILLATIONS IN VENICE"
More material for P5 Milind Diwan for the Homestake neutrino detector group 3/1/2008.
Optimization of a neutrino factory for large  13 Golden 07 IFIC, Valencia June 28, 2007 Walter Winter Universität Würzburg.
MIND Systematic Errors EuroNu Meeting, RAL 18 January 2010 Paul Soler.
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
NEAR DETECTOR SPECTRA AND FAR NEAR RATIOS Amit Bashyal August 4, 2015 University of Texas at Arlington 1.
ESSνSB – Far Detector and Underground Site nd ESSnuSB Meeting in Lund Tord Ekelöf Uppsala University Tord Ekelöf, Uppsala Univerisity.
23/11/05BENE meeting at CERN1 (22-25 November 2005) L. Mosca (CEA-Saclay) The MEMPHYS project MEgaton Mass PHYSics in a Large International Underground.
Epiphany06 Alain Blondel A revealing comparison: A detailed comparison of the capability of observing CP violation was performed by P. Huber (+M. Mezzetto.
T2K Oscillation Strategies Kevin McFarland (University of Rochester) on behalf of the T2K Collaboration Neutrino Factories 2010 October 24 th 2010.
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
ESSνSB: The ESS neutrino facility for CP violation discovery
Neutrino Oscillations and T2K
IPHC-IN2P3/CNRS Strasbourg
Neutrino factory near detector simulation
J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting
Physics and Performance Evaluation Group: Status and plans
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
Detector Baseline EuroNu Meeting, RAL 20 January 2010 Paul Soler.
Physics with the ICARUS T1800 detector
nuSTORM: Neutrinos from STORed Muons
Results from T2K and Prospects for Hyper Kamiokande
Neutrino Oscillation Physics with a Neutrino Factory
Peter Litchfield Minnesota University For the NOA collaboration
Neutrino oscillations with the T2K experiment
Future physics at nuSTORM
Precision era.
Report of the T2KK Workshop
High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich
T2KK sensitivity as a function of L and Dm2
T2KK Sensitivity of Resolving q23 Octant Degeneracy
A Superconducting Proton/Electron Linac
Fine-Grained Near Detector(s) at JHF: Purpose and Thoughts
Naotoshi Okamura (YITP) NuFact05
Future neutrino experiments
Impact of neutrino interaction uncertainties in T2K
Determination of Neutrino Mass Hierarchy at an Intermediate Baseline
Double beta decay and Leptogenesis
Conventional Neutrino Beam Experiment : JHF – Super-Kamiokande
The European Consortium working on the ESSνSB project
Poster session: Wednesday 6 June
Presentation transcript:

The status and performance of ESSnuSB KEK and J-PARK 5 and 6 June 2019 Tord Ekelöf Uppsala University KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Why is there only matter and no antimatter in Universe? . Why is there only matter and no antimatter in Universe? The Sakharov conditions (necessary but not sufficient) to explain the Baryon Asymmetry of the Universe (BAU): 1. At least one B-number violating process. 2. C- and CP-violation 3. Interactions outside of thermal equilibrium Grand Unified Theories can fulfill the Sakharov conditions. However, in each m3 of the Universe there are on average ca 109 photons, one proton and no antiproton. The CP violation measured in the quark sector is far too small (by a factor 109) to explain this 109 photon to baryon ratio. Now, neutrino CP-violation, so far not observed, may very well be large enough to permit an explanation of BAU through the leptogenesis mechanism which relates the matter-antimatter asymmetry of the universe to neutrino properties: decays of heavy Majorana neutrinos generate a lepton asymmetry which is partly converted to a baryon asymmetry via sphaleron processes. Tord Ekelöf, Uppsala University

Three neutrino mixing Non-CP terms CP violating atmospheric solar interference CP violating Tord Ekelöf, Uppsala University Spåtnid Conference 2018

Neutrino Oscillations with "large" θ13 for small θ13 1st oscillation maximum is better for "large" θ13 1st oscillation maximum is dominated by atmospheric term CP interference solar atmospheric θ13=1º θ13=8.8º (arXiv:1110.4583) L/E P(νμ→νe) 2nd oscillation maximum θ13=8.8º ("large" θ13) dCP=-90 dCP=0 dCP=+90 L/E 1st oscillation max.: A=0.3sinδCP 2nd oscillation max.: A=0.75sinδCP (see arXiv:1310.5992 and arXiv:0710.0554) more sensitivity at 2nd oscillation max. Tord Ekelöf, Uppsala University Spåtnid Conference 2018

The ESS neutron and neutrino beams 6 KEK and J-PARC Tord Ekelof, Uppsala University 201M8-0a9-y112017 2019-06-05/06

Required modifications of the ESS accelerator architecture for ESSnuSB  F. Gerigk and E. Montesinos CERN-ACC-NOTE-2016-0050 8 July 2016 to accelerate to 2.5 GeV “No show stoppers have been identified for a possible future addition of the capability of a 5 MW H- beam to the 5 MW H+ beam of the ESS linac built as presently foreseen. Its additional cost is roughly estimated at 250 MEuros.” Cf total cost of the ESS 5 MW linac of ca 1000 MEuros KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

The Megaton Water Cherenkov neutrino detector MEMPHYS like Cherenkov detector(MEgaton Mass PHYSics studied by LAGUNA Two cylindrical tanks Total fiducial volume 500 kt (~20xSuperK) Readout: ~240k 8” PMTs 30% optical coverage (arXiv: hep-ex/0607026) KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Garpenberg Mine 540 km from ESS The MEMPHYS type detector to be located 1000 m down in a mine Garpenberg mine depth 1200 m Truck access tunnel A new ore-hoist shaft has been taken into operation, leaving an older shaft free to use for transport of ESSnuSB-detector cavern excavation-debris Granite drill cores KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Zinkgruvan Mine 360 km from ESS Zinggruvan mine depth 1500 m Truck access tunnel The main ore transport-shaft hoist has a capacity of 6000 tons per 24 hours of which only 2/3 is used. To bring up the 2.5 Mton of cruched rock will take order 3 years. KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

The second ν oscillation maximum The ultimate precision in the determination of the leptonic CP violating angle δCP from neutrinos oscillation measurements will be set by systematic errors. The motivation for the effort to generate a world-uniquely intense neutrino beam using the ESS 5 MW linac is to have enough statistics to reach the second maximum where the CP signal is 3 times higher than at the first maximum, thus reducing the uncertainty in δCP due to systematic errors by a factor 3. KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

The effect of the sharply decreasing ν detection cross-section flux(E) 2.5 GeV xs CC, wat.dat file (Enrique) nue anue numu anumu (prob*xs)(E) dcp=0, NH KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Comparison of the two mines Garpenberg Zinkgruvan KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Systematic errors Systematic uncertainties in long-baseline neutrino oscillations for large θ13 Pilar Coloma, Patrick Huber, Joachim Kopp, and Walter Winter Phys. Rev. D 87, 033004 – Published 11 February 2013 KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Sensitivity to the different error types Fraction of values of CP for which a 5 discovery would be possible is shown when each of the systematic errors from table is varied individually between one half of the "optimistic" values and twice the "pessimistic" ones. A 540 km baseline and 5 yrs in neutrino and antineutrino mode have been assumed. The different systematics studied in the plot are the far and near detector fiducial volumes (FD and ND), the signal and background components of the beam running in neutrino and antineutrino modes (S v , B v , S v , and B v ), the cross section uncertainties for neutrinos and antineutrinos (X v and X v ) as well as for the NC interactions (NC v and NC v ) and the ratio of the muon to electron neutrino cross sections (RX v and RX v ). KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Comarison of the two mines KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

ESSnuSB performance at Garpenberg (blue) and Zinkgruvan (red) and the two error sets ‘Def.’ and ‘ Opt’ KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

ESSnuSB, DUNE and Hyper-K The performances of ESSnuSB, DUNE and Hyper-K The performance of ESSnuSB, DUNE and Hyper-K assuming the same systematic error 3% for all three experiments to compare them on the same footing (detailed explanation on the next slide) Courtesy Enrique F. Martinez KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Explanation of the figures in slide 14 In these figures are shown results for two 250 kt detectors in the Garpenberg mine (540 km baseline, blue curves), two 250 kt detectors in the Zinkgruvan mine (360 km baseline, green curves) and one 250 kt detector in the Garpenberg mine and one in the Zinkgruvan mine (black curves).  The Hyper-K curve in the middle and right plots and the two resolution values in the left plot for δCP = 0 and δCP = π/2, indicated by the two dotted horizontal lines, are those presented by Hyper-K at the Neutrino 2018 conference. The DUNE curves have been derived using the public GLoBES file released by the DUNE collaboration with its Conceptual Design Report in 2016. Performance predictions for DUNE, assuming 7 years of data taking, were shown by the DUNE collaboration at the Neutrino 2018 conference. For the comparison, in this plot the same simulations were repeated, assuming 10 years of data taking to be in line with the assumptions made for the Hyper-K simulations. The ESSνSB curves have been derived setting the systematic errors to 3% to be in line with the systematic error levels set by DUNE and Hyper-K. The θ13 and θ23 values for DUNE and ESSνSS have been set to the same values as those used by Hyper-K, again to compare the three experiments on the same footing. KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Preliminary plots from a paper in preparation by Monojit Ghosh and Tommy Ohlsson at KTH Stockholm KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

The interest of measuring δCP precisely Test of flavor models Baryon Asymmetry of the Universe See Silvia Pascoli’s talk at this workshop from which these two slides are taken KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Future further option form a ESS neutrino and muon facility Neutrons to ESS ESS proton driver Protons dump nm or nm Long Baseline Detector ESSnuSB 2.7x1023 p.o.t/year p decay Test Facility nm + ne m+ or m- Short Baseline Detector Accumulator Decay channel or ring nuSTORM Short Baseline Detector ne + nm Front end Muons of average energy ~0.5 GeV at the level of the beam dump (per proton) Storage ring RLA acceleration Long Baseline Detector Neutrino Factory Cooling Muon Collider RCS acceleration Collider ring → ← μ+ μ- See Carlo Rubbias talk at the NeuTel2019 workshop more than 4x1020 μ/year from ESS KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

ESSnuSB organization and time plan EU grant 3 MEUR Kick-off meeting in January 2018. ESSνSB has currently engaged 10 postdocs. First ESSnuSB and EuroNuNet annual meeting held in Strasbourg 22-26 November 2018 partners: IHEP, BNL, SCK•CEN, SNS, PSI, RAL More information at: http://essnusb.eu/ KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

ESSnuSB organization and time plan A 2nd generation neutrino Super Beam 2033-2036: Start Data taking 7 years Construction of the facility and detectors, including commissioning 2-5 years, International Agreement 2024:End Preparatory Phase, TDR 2021: End of ESSνSB Design Study, CDR and preliminary costing 2018: beginnin g of ESSνSB Design Study (EU- H2020) 2016- 2019: beginnin g of COST Action EuroNuN et 2012: Θ13 measurement published - inception of the ESSnuSB project Nucl. Phys. B 885 (2014) 127 KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

“The potential of the world-uniquely powerful ESS linear accelerator for intensity-frontier particle physics” There are plans to organize a workshop with this title at ESS in the late autumn 2019 to overview the possibilities for a long term program on neutrino och muon physics, including the muon collider, based on the ESS high power linac. KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Concluding remarks ESSnuSB, the design of which is currently being studied, is complementary to other existing and planned super beam experiments by the fact that it focusses at the second maximum where the sensitivity to systematic errors is 3 times lower than at the first maximum, the correlation with other parameter of the ν mixing matrix is different and that the neutrino energy is low enough for the resonant and deep inelastic backgrounds to be strongly suppressed. If and when the current experimental hints of CP violation will have been confirmed on the level of 5σ, the next important step will be to make an accurate measurement of the CP violating angle δCP , which will require the CP violation signal to maximized. Accurate measurement of δCP has the potential to provide decisive information on flavour models and on the baryon asymmetry. The use of the ESS linac for the producing a world-uniquely intense neutrino beam can pave the way for making use of the concurrent production of an equally intense muon beam to realize the Muon Collider or Neutrino Factory project. KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06

Thank you KEK and J-PARC Tord Ekelof, Uppsala University 2019-06-05/06