New Results from the MEG Experiment

Slides:



Advertisements
Similar presentations
NDVCS measurement with BoNuS RTPC M. Osipenko December 2, 2009, CLAS12 Central Detector Collaboration meeting.
Advertisements

M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
Genova/Pavia/Roma Flavio Gatti, PSI, July 1st, Timing Counter july 2004.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Malte HildebrandtMEG Review Meeting, 14th February 2007 Report of Run Coordinator Run 2006 Summary Malte Hildebrandt MEG Review Meeting, 14th February.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Calibration and monitoring of the experiment using the Cockcroft-Walton accelerator G. Signorelli Sezione di Pisa MEG Review meeting - 20 Feb On.
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
Photon Flux Control Liping Gan UNCW. Outline PrimEx-  experiment requirement Tagged photon Procedure to obtain the number of tagged photons Relative.
1 NaI calibrationneutron observation NaI calibration and neutron observation during the charge exchange experiment 1.Improving the NaI energy resolution.
Experimental Search for the Decay K. Mizouchi (Kyoto University) (1) Physics Motivation (2) Detector (3) Selection Criteria (4) Branching Ratio (5) Background.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
06/2006I.Larin PrimEx Collaboration meeting  0 analysis.
A. Baldini PSI July 05 Overview of the experiment MEG is being built (Beam line, Magnet, LXe, DC, TC, Elect., Software) Delays in some items: O(months)
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Status and perspectives of the MEG Experiment Fabrizio Cei INFN & University of Pisa On behalf of the MEG Collaboration FCCP 2015 Workshop Capri,
g beam test of the Liquid Xe calorimeter for the MEG experiment
MEG Experiment Data Analysis: a status report
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
IBD Detection Efficiencies and Uncertainties
K+e+γ using OKA detector
The MiniBooNE Little Muon Counter Detector
A. Scordo on behalf of the AMADEUS collaboration
Status of MEG-I physics analysis
Electroweak physics at CEPC
Search for lepton flavor violation: Latest results from the MEG experiment Gordon Lim.
Simulation for DayaBay Detectors
The Electromagnetic calorimeter of the MEG Experiment
Riunione della CNS1 a Bari
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
CMS ECAL Calibration and Test Beam Results
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
Upgrade of LXe gamma-ray detector in MEG experiment
Instrumentation for Colliding Beam Physics 2017
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
KEK, 阪大RCNPA, 阪大理B, 京大理C, 原研先端研D,
Experimental Search for the Decay
Experimental Search for the Decay
MEG Summary T. Mori for MEG Collaboration February 9, 2005.
COherent Muon to Electron Transition (COMET)
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
Trigger operation during 2007 run
Decay Angular Measurement in the MEG Experiment
Susan Burke, University of Arizona
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Presentation transcript:

New Results from the MEG Experiment Jeanine Adam on behalf of the MEG Collaboration Zurich PhD Seminar 2011 29th August 2011 / ETH Zurich

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch Contents MEG Experiment Introduction Detector Calibrations Data Taking Run Overview Detector Performance Analysis 2009 2010 Alternatives 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Introduction: Goal and Signature MEG Experiment Data Taking Analysis Introduction Detector Calibrations Introduction: Goal and Signature Goal: Search for the lepton flavor violating decay with a sensitivity of 10 -13 in branching ratio (current upper limit by MEGA: 1.2 · 10 -11) An observation of this decay will reveal new physics beyond the SM! Signature of signal event ( decay at rest): and emitted back-to-back Each and carries an energy of 52.8 MeV Coincident in time Background Radiative muon decay:  → e    Precise measurements of kinematic variables for photon and positron are crucial! Accidental coincidence:  → e   +  08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Introduction: MEG Experiment Data Taking Analysis Introduction Detector Calibrations Introduction: MEG Experiment International collaboration (~80 physicists) MEG is located at the Paul Scherrer Institute (PSI) 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Detector: Beam and Target MEG Experiment Data Taking Analysis Introduction Detector Calibrations Detector: Beam and Target Beam Low momentum muons (28 MeV/c) Wien filter ( / separation) Superconducting beam transport solenoid (BTS) with degrader Stopping rate of 3 × 10 7 muons/sec Target 205 m polyethylene foil Slanted angle of 20.0° Holes (r = 5 mm) to check vertex reconstruction 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis Introduction Detector Calibrations Detector: Overview Photon: Liquid xenon scintillation detector (position, timing, energy) Positron: COBRA positron spectrometer (position, timing, energy) 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Detector: Spectrometer MEG Experiment Data Taking Analysis Introduction Detector Calibrations Detector: Spectrometer COBRA Magnet Superconducting main magnet Gradient magnetic field (B = 0.49 – 1.27 Tesla) Timing Counters 2 x 15 plastic scintillator bars read out by PMTs 2 x 256 scintillation fibers read out by APDs Drift Chamber System 16 dc modules aligned radially to beam axis Low-mass construction (12.5 m thick Kapton foils with 250 nm Al deposition, He:C2H6 gas mixture) 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Detector: LXe Calorimeter MEG Experiment Data Taking Analysis Introduction Detector Calibrations Detector: LXe Calorimeter World’s largest liquid xenon detector Filled with 900 liter of LXe (T = 161-165 K) Scintillation light is picked up by 846 PMTs High purity at sub-ppm level to avoid scintillation light absorption due to impurities (water, oxygen) Calibration of LXe detector 2 x week (total 6 hours): LED → PMT gain calibration Alpha → PMT quantum efficiency calibration Cockcroft-Walton → Uniformity, stability Neutron Generator → Stability (beam off and on) Special calibration runs: CEX ( , ) → Energy scale, uniformity Cosmics → Alignment ... 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Calibrations: PMT Calibrations MEG Experiment Data Taking Analysis Introduction Detector Calibrations Calibrations: PMT Calibrations PMT Gain Calibrations: Several LEDs inside the LXe detector Can be flushed with different intensities Fit correlation between variance and mean of charge distributions to calculate gain of each PMT PMT QE Calibrations: 25 241Am sources (known positions) inside the detector Compare MC simulation with data to calculate QE of each PMT 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis Introduction Detector Calibrations Calibrations: Cockcroft-Walton Proton Accelerator 1 MeV Cockcroft-Walton proton accelerator and a Li2B4O7 crystal target are used to excite the reactions Li(p,)Be and B(p,)C Reactions produce gamma lines of 4.4 / 11.7 / 17.6 MeV Check stability of the detector and correct non-uniformity of energy response 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis Introduction Detector Calibrations Calibrations: Neutron Generator Since 2010 a pulsed neutron generator is used to obtain neutrons with good S/N ratio The thermalized neutrons are captured in Nickel producing a 9 MeV photon emission Data taking is possible during beam off / on periods: Similar spectra Very stable performance during 2010 NG data is used in 2011 as standard monitor tool 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch Data Taking 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis Run Overview Performance Run Overview Run 2008 First MEG physics data taking period (3 months) Result published in Nuclear Physics B 834 (2010) 1 Improvements for 2009 / 2010 Stable drift chamber HV and Xenon light yield situation New drift chamber alignment (Millipede) Better understanding of positron correlations New / improved LXe calibration methods 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis Run Overview Performance Run Overview Run 2009 Physics data taking DAQ time total: 35 days Muons on target: 0.65 · 10 14 Run 2010 Optimized beam (adjusted degrader) Improved time resolution situation Physics data taking DAQ time total: 56 days Muons on target: 1.10 · 10 14 Twice the statistics of 2009 data 2009 PSI accelerator maintenance work 2010 CEX run PSI accelerator maintenance work 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis Run Overview Performance Detector Performance 2009 2010 Gamma Energy (%) 1.9 Gamma Timing (ps) 96 67 Gamma Position (mm) 5 (u,v) / 6 (w) Gamma Efficiency (%) 58 59 e Timing (ps) 107 e Momentum (keV) 310 330 e Theta (mrad) 9.4 11.0 e Phi (mrad) 6.7 7.2 e Vertex (mm) 1.5 (z) / 1.1 (y) 2.0 (z) / 1.1 (y) e Efficiency* (%) 40 34 e-gamma timing (ps) 146 122 Trigger Efficiency (%) 91 92 * e efficiency = DC-TC matching efficiency x DC detection efficiency 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch Analysis 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis 2009 2010 Alternatives Analysis Blind box analysis, i.e. optimization of analysis and background studies are done in sidebands Likelihood fit: Parameters: Number of signal, radiative muon decay and accidental background events Observable: Determination of upper limit by Feldman & Cousins 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis 2009 2010 Alternatives Analysis 2009 Data Nsig = 3.4 (+6.6 / -4.4) UL = 9.6 · 10 -12 (90% CL) LL = 1.7 · 10 -13 (90% CL) Total Accidental Radiative Signal 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis 2009 2010 Alternatives Analysis 2010 Data Nsig = -2.2 (+5.0 / -1.9) UL = 1.7 · 10 -12 (90% CL) LL = --- Total Accidental Radiative Signal 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch MEG Experiment Data Taking Analysis 2009 2010 Alternatives Analysis Summary Nsig (best fit) BR LL (90% CL) BR UL (90% CL) 2009 3.4 1.7 · 10 -13 9.6 · 10 -12 2010 -2.2 --- 1.7 · 10 -12 2009 + 2010 -0.5 2.4 · 10 -12 MEG Result 2009+2010 data is consistent with “no signal” hypothesis Fitting was done by 3 analysis groups with different parameterizations, statistical approaches, ... with consistent results 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Analysis Alternatives MEG Experiment Data Taking Analysis 2009 2010 Alternatives Analysis Alternatives Reduce 5 dim observable to a one dimensional discriminant variable: 2 different kind of analysis: Cut analysis (minimize sensitivity) Likelihood fit (same procedure as for the 5 dim observable) Advantages: Fast analysis Fast toyMC production Lsig, LBG, LRMD are the signal, accidental background and RMD likelihoods Likelihood Fit 2009 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Analysis Alternatives MEG Experiment Data Taking Analysis 2009 2010 Alternatives Analysis Alternatives Results of the Rsig cut analysis and the Rsig likelihood fit: Both the Rsig cut analysis and the likelihood fit results are consistent with the results of the three analysis groups The Rsig cut analysis result is very close to the official MEG result Use it for checks and estimations which couldn’t be done until now (too time consuming) UL (90% CL) Official Analysis Rsig Cut Analysis Rsig Likelihood Fit 2009 UL 9.6 · 10 -12 1.1 · 10 -11 2010 UL 1.7 · 10 -12 2.8 · 10 -12 1.8 · 10 -12 2009+2010 UL 2.4 · 10 -12 3.2 · 10 -12 2.6 · 10 -12 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch

Summary and Conclusion MEG Experiment Data Taking Analysis Summary and Conclusion The MEG experiment is searching for the LFV decay aiming a sensitivity of ~10 -13 Physics data taking started in 2008 2009+2010 data are consistent with “no signal” hypothesis New physics is now constrained by a 5x tighter upper limit: MEG is taking more physics data this and next year to reach ~10 -13 sensitivity 08/29/2011 Zurich PhD Seminar 2011 / Jeanine Adam / jeanine.adam@psi.ch