Cell Differentiation Read the lesson title aloud to students or have a volunteer read the title aloud.

Slides:



Advertisements
Similar presentations
B-2.4 Explain the process of cell differentiation as the basis for the hierarchical organization of organisms (including cells, tissues, organs, and.
Advertisements

Chapter 5 Cell Growth and Division Mr. Shilala DAHS
Cell Differentiation. Learning Objectives  Describe the process of differentiation.  Define stem cells and explain their importance.  Identify the.
1 Review What happens during differentiation 2 Review What are stem cells Compare and Contrast How are embryonic stem cells and adult stem cells alike.
Lesson Overview 10.4 Cell Differentiation.
10.3 Regulating the Cell Cycle 10.4 Cell Differentiation
Key concept: Cells work together to carry out complex functions.
Cell Differentiation Section 10.4.
Lesson Overview 10.4 Cell Differentiation.
©2009 Carolina Biological Supply CompanySome images ©2009 Jupiterimages Corporation.
Stem Cells Science in the News Adapted by your teacher Ms. Boehm.
5.5 Multicellular Life Activate Prior Knowledge Look at one of your hands. What are some of the different ypes of cells in your hand? Those making up skin,
5.5 Multicellular Life KEY CONCEPT Cells work together to carry out complex functions. Peace, man!
Cell Differentiation & Organization of the Human Body Ch 10.4 & 30.1 (M)
Lesson Overview Lesson Overview Cell Differentiation Lesson Overview 10.4 Cell Differentiation.
Have web quest out. Quiz on Tuesday.
Stem Cells Stem Cells 1. What is a Stem Cell? GeneralSpecific  Unspecialized cells  Give rise to more than 250 specialized cells in the body  Serve.
Lesson Overview 10.4 Cell Differentiation.
Lesson Overview Lesson Overview Cell Differentiation Lesson Overview 10.4 Cell Differentiation.
5.5 Multicellular Life Cells work together to carry out complex functions.
Lesson Overview 10.4 Cell Differentiation.
Lecture #6: From one Cell to many (Differentiation)
Lecture #6: From one Cell to many (Differentiation)
Stage 1 Biology Semester Biotechnology
12-9 and Turn In: Concept Map and Vocabs Warm up# 11-15
10.3 Regulating the Cell Cycle
What are stem cells?  The unspecialized cells from which differentiated cells develop are known as stem cells.
Lesson Overview Lesson Overview Cell Differentiation Lesson Overview 10.4 Cell Differentiation.
Stem Cells. Review Greenhouse gases are a part of which cycle? A. CarbonB. NitrogenC. Phosphorus Which level is a plant in a food web? Who wrote evolutionary.
STEM CELLS A cell that has the ability to continuously divide and differentiate (develop) into various other kind(s) of cells/tissues. Stem Cell Characteristics:
Lesson Overview Lesson Overview Cell Differentiation Lesson Overview 10.4 Cell Differentiation.
Lesson Overview Lesson Overview Cell Differentiation Lesson Overview 10.4 Cell Differentiation.
Specialized Plant and Animal cells 1
KEY CONCEPT Cells work together to carry out complex functions.
University of Rajshahi
Friday, December 2nd Miss Brawley.
Lesson Overview 10.4 Cell Differentiation.
Bio Explain how instructions in DNA lead to cell differentiation and result in cells specialized to perform specific functions in multicellular organisms.
Cell Differentiation Chapter 10.4.
Asexual Reproduction and Multicellular Life
Mitosis Cancer Stem Cells
Emergent Properties of Cells
Lecture #6: From one Cell to many (Differentiation)
Lesson Overview 10.4 Cell Differentiation.
Lesson Overview 10.4 Cell Differentiation
Stem Cells PUPIL NOTES.
Stem cells.
Lesson Overview 10.4 Cell Differentiation.
CELLULAR DIVISION Stem Cells.
Asexual Reproduction and Multicellular Life
Lesson Overview 10.4 Cell Differentiation.
How do cells know when to divide?
Cell Differentiation Read the lesson title aloud to students or have a volunteer read the title aloud.
Thursday, December 1st Miss Brawley.
KEY CONCEPT Cells work together to carry out complex functions.
Emergent Properties of Cells
Cell Specialization Lesson 7 January 27th, 2011.
Monday, December 5th Miss Brawley.
Lesson Overview 10.4 Cell Differentiation.
Lesson Overview 10.4 Cell Differentiation.
Stem Cells and Cellular Differentiation
Lesson Overview 10.4 Cell Differentiation.
Cell Differentiation (10.4)
Lesson Overview 10.4 Cell Differentiation.
At the moment of conception a potential human being is just one cell
Ch.10-4 Cell Differentiation
Chapter 5: Sections 4 & 5.
Lesson Overview 10.4 Cell Differentiation.
Lesson Overview 10.4 Cell Differentiation.
Lesson Overview 10.4 Cell Differentiation.
Presentation transcript:

Cell Differentiation Read the lesson title aloud to students or have a volunteer read the title aloud.

State standard! Analyze scientific and ethical arguments to support the pros and cons of application of a specific biotechnology technique such as stem cell usage, in vitro fertilization, or genetically modified organisms.

Learning Objectives Investigate how cells become specialized for different functions. Explain what stem cells are. Evaluate some possible benefits and issues associated with stem cell research. Click to reveal each of the learning objectives. Ask students to think about how many cells the human body actually has. Allow four to five guesses. Then indicate who was closest and point out that the human body has one hundred trillion cells. Write out the number on the board: 100,000,000,000,000. Point out that a majority of the cells in their body are of a distinct cell type; they are specialized. Divide students into groups and challenge them to see how many different types of cells they can name. Compile the group lists on the board or chart paper. Remind students that all organisms began as a single cell. Ask: How do you think one cell gives rise to all these different specialized cells? Sample answer: As the single cell reproduces, different daughter cells undergo changes that allow them to perform specific functions. Tell students that by the end of the presentation, they will be able to describe the process by which cells become specialized and will be able to discuss the role of stem cells in the body.

From One Cell to Many During the development of an organism, cells differentiate to become . specialized Remind students that each of us started life as a single cell, passed through a developmental stage called an embryo, continued to develop through childhood, and are continuing into adulthood. During the process of development, our cells, and those of any multicellular organism become more specialized for particular functions. Ask a volunteer complete the sentence. Click to reveal the correct answer. Tell students: Differentiation is the process by which cells become specialized. Direct student attention to the photos. Explain that the three circular pictures are photomicrographs showing cells from a plant. Ask students to match the photos with their function. Once the class agrees, click to reveal the correct connecting lines. Carry out photosynthesis Transport materials Absorbs water from ground

Mapping Differentiation Identify the animal in the diagram as the roundworm C. elegans, an animal well studied by biologists. Explain that scientists have been able to map out the fate of each cell from each cell division throughout the animal’s development from embryo to adult. Each and every time a new worm develops, the process is the same, resulting in 959 cells with precisely determined functions. Walk students through the diagram, emphasizing how the process of differentiation is predetermined for this species, always happening in the same way. This diagram offers an opportunity to review exponents. Help students calculate how many cells are in the embryonic worm when its nervous system begins to differentiate. Have a volunteer come to the board to write in the correct answer. Then have them determine, based on the equation for the eighth cell division, what the proper exponent should be to calculate the number of cells in the worm when the cuticle starts to differentiate. Have a volunteer come to the board to write in the complete equation. Click to reveal the calculations. Point out that scientists have learned a lot about cell differentiation by studying relatively simple organisms like the roundworm. Cell differentiation in mammals, however, is more complex, with a number of factors interacting to control the process. Misconception alert: Students may think that cells differentiate by passing on different hereditary information. Remind students that when cells divide, mitosis ensures each daughter cell receives a complete set of genetic information from its parent cell. 32 256 25 = 28 =

Stem Cells and Development Stem cells are the cells from which differentiated cells develop. Totipotent: can develop into any type of cell in the body (including the cells that make up the extraembryonic membranes and placenta) Pluripotent: cells that are capable of developing into most, but not all, of the body’s cell types unspecialized Explain that the original, unspecialized cells from which all cell types arise are called stem cells. Point out that how all possible cell types arise from a single cell—the zygote—is one the most important questions in biology! Ask a volunteer to come to the board to write in the term that completes the sentence. Click to reveal the correct answer. Explain that scientists use the term totipotent to describe the zygote. The term literally means “can do everything.” These cells can become any cell or tissue type anywhere in the body. The only cells in the developing organism that are truly totipotent are the original one-celled zygote and those cells produced by the first few cell divisions. Click to reveal the totipotent definition. Click to reveal the definition of pluripotent. The cells of the inner cell mass are described as “pluripotent”—they become almost any cell or tissue type, except for those tissues that will surround the embryo.

Embryonic Stem Cells-very early stages of an emrbyo Explain that after fertilization, the human embryo develops into a hollow ball of cells known as a blastocyst. The actual body of the embryo develops from the inner cell mass. These cells in the inner cell mass are embryonic stem cells. They can differentiate into virtually any cell type. Ask a volunteer to go to the board and point to or circle the portion of the blastocyst that represents embryonic stem cells. Click to reveal the circle surrounding the inner cell mass, label, and arrow. Explain that scientists are able to culture embryonic stem cells by removing the inner cell mass from blastocysts and growing the cells in a lab. Walk students through the figure to ensure they understand what the arrows represent. Ask: What does figure show happening to the inner cell mass of the blastocyst? Answer: The cells are transferred to a culture. Ask: What four cell types do these cells in culture become? Answer: neuron, fat cell, epithelial cells, macrophage Ask: Are the cells sitting in the Petri dish totipotent or pluripotent? Answer: pluripotent

Adult Stem Cells Multipotent: limited potential to develop into many different types of differentiated cells Mainly found in bone marrow, hair follicles Also some in brain, heart, and skeletal muscle Emphasize that it makes sense to find stem cells in the early stages of embryonic development, but stem cells can in fact also be found in an adult’s body. Ask students if they have heard anything about adult stem cells in news reports. Point out that while the adult body does have stem cells, these cells are neither totipotent nor pluripotent. Instead, they are described as multipotent. Click to reveal the definition of multipotent. Click to reveal each of the remaining bullet points as you explain the following. Explain that there are several regions in the adult body where stem cells are found. These stem cells give rise to a limited variety of cell types, mainly those found in tissues where the stem cells are produced. These adult stem cells produce cells for tissues such as blood and skin that have a limited life span and must be constantly replaced. Share with students that bone marrow transplants, which they may have heard about, are effectively stem cell transplants. Hematopoietic cells differentiate into white blood cells, red blood cells, and platelets. Bone marrow transplants can be used to treat patients with certain blood disorders that cause the patients to produce abnormal blood cells. Bone marrow transplants can also be used to treat cancer patients whose own marrow has been damaged by high doses of chemotherapy or radiation.

Regenerative Medicine Explain that bone marrow transplants are just one type of stem cell therapy researchers have worked on. Researchers are looking for ways to repair damage to heart muscle from heart attacks, destruction of brain cells from strokes, and damage to nerve cells from spinal cord injuries. The diagram here shows one method currently being investigated to reverse the damage caused by a severe heart attack. Read through the steps shown in the diagram. Ask: Are the cells being transferred pluripotent or multipotent? How do you know? Answer: Multipotent; they are from adult tissues, not from an embryo in early stages of development. Ask: How would the fate of the stem cells change after they are moved from the bone marrow to the heart? Answer: They would become heart muscles rather than blood cells. Point out that similar techniques might be used to treat brain damage, regenerate nerves, or repair organs such as the liver and kidneys that have been damaged by chemicals or disease. Undifferentiated cells are used to repair or replace damaged cells and tissues.

Ethical Issues Human adult stem cell research is rarely controversial because of willing donors. Human embryonic stem cell research is controversial because arguments for and against involve ethical issues of life and death. Ask students why research into therapies using adult stem cells is less controversial than research into therapies involving embryonic stem cells. Encourage them to consider how the issue of donor consent might play a role. Also guide them to see that both sides of the controversy over embryonic stem cell use are making an ethical case: Those arguing for using embryonic stem cells argue that not using the cells would prevent doctors researchers from saving lives, while many arguing against the use of these stem cells argue that they are protecting human embryonic life. To bring the discussion to a close, click to reveal the full statements for each bullet point.

Induced Pluripotent Stem Cells In 2007, researcher Shinya Yamanaka was able to convert human fibroblast cells (cells that produce components of the body’s connective tissues) into cells that closely resemble embryonic stem cells. These cells are called induced pluripotent stem cells. These cells may ultimately make it possible to tailor specific therapies to an individual by using that person’s own cells. Ask students how these breakthroughs affect the debate over stem cell use. Lead a brief discussion about the possibilities. Be sure students come away from discussion with the understanding that further work on induced pluripotent stem cells may ultimately solve the ethical problems that have made stem cell research controversial.