The Michaelis-Menten Equation

Slides:



Advertisements
Similar presentations
Enzyme kinetics -- Michaelis Menten kinetics
Advertisements

Enzyme Kinetics C483 Spring 2013.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Enzyme Kinetics.
François Fages MPRI Bio-info 2006 Formal Biology of the Cell Modeling, Computing and Reasoning with Constraints François Fages, Constraint Programming.
Polymerization kinetics
Kinetics: Reaction Order Reaction Order: the number of reactant molecules that need to come together to generate a product. A unimolecular S  P reaction.
Enzymes, con't.. Substrate Activation (catalytic mechanisms) Strain on substrate –Weakens bonds –Makes more accessible for reaction Acid/base catalysis.
Chymotrypsin Is Activated by Proteolysis Adapted from Campbell (1999) Biochemistry (3d) p R15-I16 Chymotrypsinogen (inactive) p -Chymotrypsin (active)
Chapter 7 Chem 341 Suroviec Fall I. Introduction The structure and mechanism can reveal quite a bit about an enzyme’s function.
Computational Biology, Part 17 Biochemical Kinetics I Robert F. Murphy Copyright  1996, All rights reserved.
General Features of Enzymes Most biological reactions are catalyzed by enzymes Most enzymes are proteins Highly specific (in reaction & reactants) Involvement.
Reaction kinetics: 1st order reactions
Enzyme Kinetics and Catalysis II 3/24/2003. Kinetics of Enzymes Enzymes follow zero order kinetics when substrate concentrations are high. Zero order.
Enzyme Kinetics: Study the rate of enzyme catalyzed reactions. - Models for enzyme kinetics - Michaelis-Menten kinetics - Inhibition kinetics - Effect.
Enzyme Catalysis (26.4) Enzymes are catalysts, so their kinetics can be explained in the same fashion Enzymes – Rate law for enzyme catalysis is referred.
Inhibited Enzyme Kinetics Inhibitors may bind to enzyme and reduce their activity. Enzyme inhibition may be reversible or irreversible. For reversible.
ENZYME KINETIC M. Saifur R, PhD. Course content  Enzymatic reaction  Rate of Enzyme-Catalyzed Reactions  Quatification of Substrate Concentration and.
Chemical Kinetics Nancy Griffeth January 8, 2014 Funding for this workshop was provided by the program “Computational Modeling and Analysis of Complex.
Computational Biology, Part 15 Biochemical Kinetics I Robert F. Murphy Copyright  1996, 1999, 2000, All rights reserved.
Enzyme kinetics Why study the rate of enzyme catalyzed reactions? Study of reaction rates is an important tool to investigate the chemical mechanism of.
CH13. Enzymes cXXkcZ2jWM&feature=related.
Chapter 6.3: Enzyme Kinetics CHEM 7784 Biochemistry Professor Bensley.
Chapter 5 (part 2) Enzyme Kinetics.
Lecture 6: Kumar Measuring enzyme activity 1. Effect of pH on enzyme activity 2.
Quiz #3 Define Enzyme Classes Systematic naming –Given a reaction (including names) –Use subclass designation if appropriate Catalytic mechanisms –Define.
Rules for deriving rate laws for simple systems 1.Write reactions involved in forming P from S 2. Write the conservation equation expressing the distribution.
Chapter 5 (part 2) Enzyme Kinetics. Rate constant (k) measures how rapidly a rxn occurs AB + C k1k1 k -1 Rate (v, velocity) = (rate constant) (concentration.
Picture of an enzymatic reaction. Velocity =  P/  t or -  S/  t Product Time.
Enzyme Catalysis SBS017 Basic Biochemistry Dr John Puddefoot
The Michaelis-Menton Model For non-allosteric enzymes, the most widely used kinetic model is based upon work done by Leonor Michaelis and Maud Menton For.
Lecture – 3 The Kinetics Of Enzyme-Catalyzed Reactions Dr. AKM Shafiqul Islam
E + S ES P + E k2k2 v o = k 2 (ES) Michaelis reasoned that If k 2 is the smallest rate constant, the overall velocity of the reaction is Problem: We cannot.
Enzyme Kinetics I 10/15/2009. Enzyme Kinetics Rates of Enzyme Reactions Thermodynamics says I know the difference between state 1 and state 2 and  G.
6.1 A Brief Look at Enzyme Energetics and Enzyme Chemistry Converting substrates to product requires intermediate states – Intermediates are less stable.
Enzymes Fall 2007 Lecture 2 Downloaded from
Enzyme Kinetics and Inhibition Stryer Short Course Chapter 7.
Enzyme kinetics & Michaelis-Menten Equation Abdul Rehman Abbasi MSc Chemistry Semester – I Preston University Isb.
Enzyme Kinetics Enzyme Kinetics:
Enzyme Kinetics.
Chemical Kinetics.
Basic enzyme kinetics Concepts building:
Enzyme Kinetics Bwahahahaha!
Basic enzyme kinetics Concepts building:
Enzymes.
Reactor Theory: kinetics
ARWA KHYYAT.BIOCHEMISTRY.KSU
Enzyme Kinetics provides Insight into
Bioreactors Engineering
Today we will deal with two important Problems:
Enzyme specificity.
Enzymes II Dr. Kevin Ahern.
ENZYME INHIBITION.
Enzymes II:kinetics Dr. Nabil Bashir.
Thermodynamics Determines if the reaction is spontaneous (does it occur). Does not tell us how fast a reaction will proceed. Catalysts (enzymes) can lower.
Lecture 15 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chapter 6 CHM 341 Fall 2016 Suroviec.
CHMI 2227E Biochemistry I Enzymes: Kinetics
The Vmax and Km values of a certain enzyme can be measured by the double reciprocal plot (i.e., the Lineweaver-Burk plot).
13 part 2 Enzyme kinetics 酵素動力學 溫鳳君0993b303 姜喆云0993b039.
بسم الله الرحمن الرحيم.
(BIOC 231) Enzyme Kinetics
Chapter Three: Part Two
Lecture 8 Enzyme Kinetics
Modelling Our System Christin and Farah.
Lecture 15 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Web: pollev.com/ucibio Text: To: 37607
Enzyme Kinetics Velocity (V) = k [S]
Lecture 15 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
23.4 Chain polymerization Occurs by addition of monomers to a growing polymer, often by a radical chain process. Rapid growth of an individual polymer.
Presentation transcript:

The Michaelis-Menten Equation ET = E + ES v= Vmax = k2 ET v/Vmax = k2 ES / k2 ET = ES/ ET v/Vmax = ES/ ET v/Vmax = ES/ E + ES ¿How to know ES? This equation cannot be explicitly integrated, however, without simplifying assumptions, two possibilities are: 1. Assumption of equilibrium. Leonor Michaelis and Maud Menten, building on the work of Victor Henri, assumed that k-1 » k2, so that the first step of the reaction reaches equilibrium. ES = E * S / Ks Ks is the dissociation constant of the first step in the enzymatic reaction 1

The Michaelis-Menten Equation Assumption of steady-state. Figure illustrates the progress curves of the various participants in reaction under the physiologically common conditions that substrate is in great excess over Enzyme ([S] » [E]). ES maintains a steady state and [ES] can be treated as having a constant value: The so called steady state assumption, a more general condition than that of equilibrium, was first proposed in 1925 by G. E. Briggs and B. S. Haldane 2

ES = E * S /(k-1+k2)/k1 ES = E * S / KM The Michaelis-Menten Equation Solving for [ES]: The Michaelis constant, KM , is defined as ES = E * S / KM Therefore: 3

The Michaelis-Menten Equation The expression of the initial velocity (v0) of the reaction, the velocity at t=0, thereby becomes v/Vmax = ES/ (E + ES) v/Vmax = (E*S)/Km/ (E + (E*S)/Km ) v/Vmax = S/ Km / (1 + S/Km) v/Vmax = S / Km + S This expression, the Michaelis-Menten equation, is the basic equation of enzyme kinetic. The maximal velocity of a reaction, Vmax occurs at high substrate concentrations when the enzyme is saturated, that is, S>> Km, and ET is entirely in the ES form v= Vmax when 4

Significance of the Michaelis Constant The Michaelis constant, KM, has a simple operational definition. At the substrate concentration at which [S] = KM, this equation yields v0 = Vmax/2 so that KM is the substrate concentration at which the reaction velocity is half maximal 5

k2= 10/5 = 2 moles/mg seg Vmax= 10 M/seg Km=10 x10-5 M Si en el ensayo se usaron 5mg/L de preparación enzimática, entonces: v= Vmax = k2 ET k2= 10/5 = 2 moles/mg seg ¿Qué predicciones podemos hacer a partir de esta información?

- dS/dt = vi = So dX/dt Al iniciar: t = 0, S = So A cualquier tiempo: T = t S = S X = (So-S)/So - dS/dt = vi = So dX/dt Graficar por ejemplo : (So – S)/t vs (1/t) ln (So/S) 9

Two-Stage Catalysis of Chymotrypsin Acylation O CH3–C–O– –NO2 Nitrophenol acetate O C CH3–C HO– –NO2 O - C Kinetics of reaction Deacylation (slow step) CH3COOH + H2O Time (sec) Nitrophenol O-H C 現在 已經知道 chymotrypsin 的催化機制分成 acylation 及 deacylation 兩個階段,其研究是利用 nitrophenol acetate 為基質所進行的;在早期的觀察中,發現催化生成 nitrophenol 的速率有兩個 phases,起先相當快放出 nitrophenol,然後變慢並一直維持此一速度。 利用兩階段式催化機制,可說明為何開始速率會比較快。 這是因為第一階段的 acylation 反應很快,而剛開始酵素都空閒著,一抓到基質就水解並放出 nitrophenol,因此黃色產物迅速上升。但是因為醋酸根還留在酵素上,準備進行第二步的 deacylation,而此一步驟相當慢速,即為 速率決定步驟 rate-limiting step;酵素要在加入水分子,釋出醋酸後,才能繼續吸入 nitrophenol acetate 繼續下一輪反應。因此出現了兩相的反應速率。 Two-phase reaction Adapted from Dressler & Potter (1991) Discovering Enzymes, p.169 E5-21

DESVIACIONESA M&M From the steady state assumption:: dE/dt = -k1 E*S + k-1 ES + k3 ES’ From the steady state assumption:: dE/dt = 0 -k1 E*S + k-1 ES + k3 ES’ dES/dt = k1 E*S – ES (k-1 + k2) dES’/dt = k2 ES – k3 ES’ dES/dt = 0 ES = k1 E*S / (k-1 + k2) v = dP1/dt = k2 ES v = dP2/dt = k3 ES’ dES’/dt = 0 ES’ = k2 ES / k3 ET= E + ES + ES’ dP2/dt = v = k3 ES’ v = k3 k2 ES / k3 v = k2 k1 E*S / (k-1 + k2) Vmax = k3 ET Vmax = k3 (E + ES + ES’) Vmax = k3 (E + k1 E*S / (k-1 + k2) + k2 ES / k3 Vmax = k3 (E + k1 E*S / (k-1 + k2) + k2 k1 E*S / (k-1 + k2) / k3 ) Vmax = k3 E + k1 k3 E*S / (k-1 + k2) + k2 k1 E*S / (k-1 + k2) 11

v / Vmax = k2 k1 E*S / (k-1 + k2) k3 E + k1 k3 E*S / (k-1 + k2) + k2 k1 E*S / (k-1 + k2) v / Vmax = k2 k1 S k3 (k-1 + k2) + k1 k3 S + k2 k1 S v / Vmax = k2 k1 S k3 (k-1 + k2) + k1 S (k2 + k3) Vmax = k3 ET v / Vmax = k2 S / (k2 + k3) k3 (k-1 + k2) / (k2 + k3) + k1 S v = k2 k3 ET S / (k2 + k3) k3 (k-1 + k2) / (k2 + k3) + k1 S

13

K-2+ Keq = Vmax f * Kp Vmax f = k2 k3 ET k-2 + k3 +k2 Vmax r * Ks Vmax r = k-1 k-2 ET k-1 + k2 +k-2 v = Vmax f Kp S – Vmax r Ks P KsKp + KpS + KsP Ks = k-1 k-2 + k-1 k3 + k2 k3 k1( k2 + k-2 + k3) Kp = k-1 k-2 + k-1 k3 + k2 k3 k-3( k-1 + k2 + k-2) v = Vmax f S – P / Keq Ks + S + (Ks/Kp) P 14

15

16

17

18

19