Developing a Project Plan CHAPTER SIX Student Version Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.

Slides:



Advertisements
Similar presentations
Precedence Diagramming
Advertisements

WBS: Lowest level OBS: Lowest level
Developing a Project Plan CHAPTER SIX Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
CP Chapter 4 Schedule Planning.
Chapter 6: Developing a Project Plan
Project Management 6e..
Chapter 17 Project Management McGraw-Hill/Irwin
Chapter 6 Time Planning & Networks
Developing the Project Plan
Where We Are Now Copyright © 2011 The McGraw-Hill Companies, All Rights Reserved.
Project Management Project Management
Developing a Project Plan Chapter 6 Luck favors to a prepared mind….. Louis Pasteur.
Developing a Project Plan
OPSM 639, C. Akkan1 Network Planning Purposes of network planning –Determine the intended timing of activities –Determine the estimates of resource requirements.
1 Lecture by Junaid Arshad Department of Engineering Management Abridged and adapted by A. M. Al-Araki, sept WBS: Lowest level OBS: Lowest level.
Developing a Project Plan
1 University of Wales Bachelor of Science (Industrial Engineering and Management) Year 3 Copyright © 2012 MDIS. All rights reserved.Section
إدارة المشروعات Projects Management
Chapter 4: Schedule, cost, and situation analysis (pt. 1) ISE 443 / ETM 543 Fall 2013.
9-1 Project Scheduling: Networks, Duration Estimation, and Critical Path Chapter 9 © 2007 Pearson Education.
Project Scheduling: Networks, Duration estimation, and Critical Path.
MGMT 483 Week 8 Scheduling.
9-1 Project Scheduling: Networks, Duration Estimation, and Critical Path Chapter 9 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.
5/4/20151 NETWORK SCHEDULING TECHNIQUES. 5/4/20152 Network Diagrams  PMI defines the scheduling process as: “the identification of the project objectives.
ELC 347 project management
Project Development Scheduling and Probability of Completion.
Project Management OPER 576 Project Networks Greg Magnan, Ph.D. April 29, 2004.
Project Scheduling: Networks, Duration Estimation, and Critical Path
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Day 15.
Chapters 8, 9, and 10 Design Stage 1 Preconstruction Stage 2: Procurement Conceptual Planning Stage3: Construction Stage 4: Project Close-out.
Projects: Critical Paths Dr. Ron Lembke Operations Management.
Project Scheduling: Networks, Duration estimation, and Critical Path
Importance of Project Schedules
Roberta Russell & Bernard W. Taylor, III
Project Time Management
Scheduling CTC-415. Activity Network Development Network Models Activity on Node Precedence Diagram Method Activity on Arrow Network Characteristics Discrete.
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall o P.I.I.M.T o American University of Leadership Ahmed Hanane, MBA, Eng, CMA, Partner.
Where We Are Now. Where We Are Now Developing the Project Plan The Project Network A flow chart that graphically depicts the sequence, interdependencies,
7-1 Copyright © 2013 McGraw-Hill Education (Australia) Pty Ltd Pearson, Larson, Gray, Project Management in Practice, 1e CHAPTER 7 Project Time Management.
HIT241 - TIME MANAGEMENT Introduction
PROJECT MANAGEMENT Outline What is project mean? Examples of projects… Project Planning and Control Project Life Cycle Gantt Chart PERT/CPM.
THE MANAGERIAL PROCESS Clifford F. Gray Eric W. Larson Developing a Project Plan Chapter 6.
3.1 NETWORK Roger D. H. Warburton Determine Activity Dependencies & Critical Path © Kanabar / Warburton,
McGraw-Hill/Irwin© 2008 The McGraw-Hill Companies, All Rights Reserved Developing a Project Plan Chapter 6.
Project Management Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 1999 PROJECT MANAGEMENT 18-1 Project Management.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall8-1 Cost Estimation and Budgeting.
Switch off your Mobiles Phones or Change Profile to Silent Mode.
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Project Management Operations Management - 5 th Edition Chapter.
PowerPoint Presentation by Charlie Cook Copyright © 2006 The McGraw-Hill Companies. All rights reserved. THE MANAGERIAL PROCESS Clifford F. Gray Eric W.
Developing a Project Plan
Dr. Hany Abd Elshakour 2/18/ :27 PM 1. Dr. Hany Abd Elshakour 2/18/ :27 PM 2 Time Planning and Control Activity on Arrow (Arrow Diagramming.
Project Management – Part 1. Overview What is a project? Project management techniques Activity lists Network diagrams Critical path analysis Gant charts.
PROJECT MANAGEMENT week 5
Chapter 4 MIS Project Management Lecturer Sihem Smida Sihem Smida Developing a project plan.
9-1 ELC 347 project management Day 19. Agenda Integrative Project –Part 4 Due –Part 5 Due Nov 24 (page 342) –Any of the first five sections can be resubmitted.
BU630-4 Project and Operations Management
Project Management -- Developing the Project Plan
Project Management: PERT/CPM
Project Scheduling KULIAH 10 Magister Sistem Informasi
& Urban Planning Civil Engineering Department
Project Scheduling KULIAH 10 Magister Manajemen
Projects: Critical Paths
Developing a Project Plan
Developing a Project Plan
Project Scheduling: networks, duration estimation, and critical path
ENM448-Project Planning and Management
Lecture 5: Project Time Planning (Precedence Diagramming Technique)
Presentation transcript:

Developing a Project Plan CHAPTER SIX Student Version Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin

6–26–2 Where We Are Now

6–36–3 Developing the Project Plan The Project Network –A flow chart that graphically depicts the sequence, interdependencies, and start and finish times of the project job plan of activities that is the critical path through the network. Provides the basis for scheduling labor and equipment. Enhances communication among project participants. Provides an estimate of the projects duration. Provides a basis for budgeting cash flow. Identifies activities that are critical. Highlights activities that are critical and can not be delayed. Help managers get and stay on plan.

6–46–4 Constructing a Project Network Terminology –Activity: an element of the project that requires time. –Merge Activity: an activity that has two or more preceding activities on which it depends. –Parallel (Concurrent) Activities: Activities that can occur independently and, if desired, not at the same time. A C DB

6–56–5 Constructing a Project Network (contd) Terminology –Path: a sequence of connected, dependent activities. –Critical path: the longest path through the activity network that allows for the completion of all project- related activities; the shortest expected time in which the entire project can be completed. Delays on the critical path will delay completion of the entire project. ABD (Assumes that minimum of A + B > minimum of C in length of times to complete activities.) C

6–66–6 Constructing a Project Network (contd) Terminology –Event: a point in time when an activity is started or completed. It does not consume time. –Burst Activity: an activity that has more than one activity immediately following it (more than one dependency arrow flowing from it). Two Approaches –Activity-on-Node (AON) Uses a node to depict an activity. –Activity-on-Arrow (AOA) Uses an arrow to depict an activity. B D A C

6–76–7 Basic Rules to Follow in Developing Project Networks 1.Networks typically flow from left to right. 2.An activity cannot begin until all preceding connected activities are complete. 3.Arrows indicate precedence and flow and can cross over each other. 4.Each activity must have a unique identify number that is greater than any of its predecessor activities. 5.Looping is not allowed. 6.Conditional statements are not allowed. 7.Use common start and stop nodes.

6–86–8 Network Computation Process Forward PassEarliest Times –How soon can the activity start? (early startES) –How soon can the activity finish? (early finishEF) –How soon can the project finish? (expected timeET) Backward PassLatest Times –How late can the activity start? (late startLS) –How late can the activity finish? (late finishLF) –Which activities represent the critical path? –How long can activity be delayed? (slack or floatSL)

6–96–9 Forward Pass Computation Add activity times along each path in the network (ES + Duration = EF). Carry the early finish (EF) to the next activity where it becomes its early start (ES) unless… The next succeeding activity is a merge activity, in which case the largest EF of all preceding activities is selected.

6–10 Backward Pass Computation Subtract activity times along each path in the network (LF - Duration = LS). Carry the late start (LS) to the next activity where it becomes its late finish (LF) unless The next succeeding activity is a burst activity, in which case the smallest LF of all preceding activities is selected.

6–11 Determining Free Slack (or Float) Free Slack (or Float) –Is the amount of time an activity can be delayed after the start of a longer parallel activity or activities. –Is how long an activity can exceed its early finish date without affecting early start dates of any successor(s). –Allows flexibility in scheduling scarce resources. Sensitivity –The likelihood the original critical path(s) will change once the project is initiated. –The critical path is the network path(s) that has (have) the least slack in common.

6–12 Practical Considerations Network Logic Errors Activity Numbering Use of Computers to Develop Networks Calendar Dates Multiple Starts and Multiple Projects

6–13 Extended Network Techniques to Come Close to Reality Laddering –Activities are broken into segments so the following activity can begin sooner and not delay the work. Lags –The minimum amount of time a dependent activity must be delayed to begin or end. Lengthy activities are broken down to reduce the delay in the start of successor activities. Lags can be used to constrain finish-to-start, start-to-start, finish-to-finish, start-to-finish, or combination relationships.

6–14 Hammock Activities Hammock Activity –An activity that spans over a segment of a project. –Duration of hammock activities is determined after the network plan is drawn. –Hammock activities are used to aggregate sections of the project to facilitate getting the right amount of detail for specific sections of a project.

6–15 Key Terms Activity Activity-on-arrow (AOA) Activity-on-node (AON) Burst activity Concurrent engineering Critical path Early and late times Gantt chart Hammock activity Lag relationship Merge activity Network sensitivity Parallel activity Slack/floattotal and free