Fig. 2 Reconfiguration of liquid metals into 3D structures.

Slides:



Advertisements
Similar presentations
Fig. 4 3D reconfiguration of liquid metals for electronics.
Advertisements

Fig. 5 MicroLED array with 3D liquid metal interconnects.
Fig. 1 Characterization of the device structure.
Fig. 1 High-resolution printing of liquid metals.
Fig. 3 The electrical contact of direct-printed and reconfigured liquid metals. The electrical contact of direct-printed and reconfigured liquid metals.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 2 CFD results. CFD results. Results of CFD simulations in horizontal (left column) and vertical (right column) cross-sections. All models oriented.
Fig. 3 Vibrational spectra of human bones from the Copper Age (Scoglietto cave, Italy). Vibrational spectra of human bones from the Copper Age (Scoglietto.
Vibrational spectra of medieval human bones (Leopoli-Cencelle, Italy)
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 1 Wireless, battery-free neural cuff for programmable pharmacology and optogenetics. Wireless, battery-free neural cuff for programmable pharmacology.
Fig. 4 Complete separation of water and solute after stable and efficient solar evaporation. Complete separation of water and solute after stable and efficient.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Fig. 6 Comparison of properties of water models.
Fig. 1 Mean and median RCR (Relative Citation Ratio) of Roadmap Epigenomics Program research articles for each year. Mean and median RCR (Relative Citation.
Fig. 2 Influence of the Roadmap Epigenomics Program on the field of epigenomics research. Influence of the Roadmap Epigenomics Program on the field of.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 5 Structural photocycle for DmCry.
Fig. 1 The structure of the 3DGraphene foam.
Fig. 1 Parameterization and temporal distribution of carbon isotopic events in the database. Parameterization and temporal distribution of carbon isotopic.
Fig. 1 Distribution of total and fake news shares.
Fig. 3 Characteristics of UV and temperature sensors.
Fig. 2 2D QWs of different propagation lengths.
Fig. 4 Unbiased and biased elastomer snappers.
Fig. 3 Magnetic scrolls. Magnetic scrolls. (A) Actuation of an IROGRAN scroll by moving the magnet toward the scroll and pulling the scroll open. The scroll.
Fig. 1 Schematic illustration and atomic-scale rendering of a silica AFM tip sliding up and down a single-layer graphene step edge on an atomically flat.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 3 Comparison of the reflective properties.
Fig. 1 Histograms of the number of first messages received by men and women in each of our four cities. Histograms of the number of first messages received.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Characteristics of ultrathin single-crystalline semiconductor films
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 1 Average contribution (million metric tons) of seafood-producing sectors, 2009–2014. Average contribution (million metric tons) of seafood-producing.
Fig. 4 Praying Prophet by Lorenzo Monaco: Mapping lake pigments and associated substrate. Praying Prophet by Lorenzo Monaco: Mapping lake pigments and.
Nanoparticle-enabled grain refinement in other materials systems
Fig. 4 Short-channel 2L-OFET for cutoff frequency measurement.
Fig. 2 Magnetic properties of FGT/Pt bilayer.
Fig. 3 Production of protein and Fe(II) at the end of growth correlated with increasing concentrations of ferrihydrite in the media that contained 0.2.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Schematic of the proposed brain-controlled assistive hearing device
Fig. 4 BS-SEM images, ternary diagrams, and phase maps for the text and reverse sides of the TS. BS-SEM images, ternary diagrams, and phase maps for the.
Fig. 1 Experimental strategy and elemental and morphological analysis of 3D/2D perovskite bilayer. Experimental strategy and elemental and morphological.
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 4 Comparison of fracture toughness by three-point bending test.
Fig. 1 Structural and electrical properties of Bi2Se3/BaFe12O19.
Fig. 5 Soft, smart contact lens for detecting glucose.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 3 Device architecture, photovoltaic performance, and operational stability of 3D/2D bilayer PSCs. Device architecture, photovoltaic performance, and.
Fig. 4 Single-particle contact angle measurements.
Fig. 1 Ultrathin, stretchable, mechanically imperceptible, multifunctional HMI device for human and robotics. Ultrathin, stretchable, mechanically imperceptible,
Fig. 3 Supraballs and films assembled from binary 219/217nm SPs/SMPs.
Fig. 2 Supraballs and films from binary SPs.
Fig. 3 Performance of the generative model G, with and without stack-augmented memory. Performance of the generative model G, with and without stack-augmented.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 1 Overview of amber clast with synchrotron x-ray μCT image of articulated snake skeleton (DIP-S-0907). Overview of amber clast with synchrotron x-ray.
Fig. 1 Architected materials fabrication by projection microstereolithography–based additive manufacturing using poly(ethylene glycol) diacrylate resin.
Fig. 4 Optimization of motility through shape-shifting driven by osmotic or shear stress. Optimization of motility through shape-shifting driven by osmotic.
Fig. 5 Flickering RSCF display at night.
Fig. 5 CD19-tPSMA(N9del) CAR T cell numbers in mouse and human.
Fig. 3 Temperature-dependent heat capacity of YbTM2Zn20.
Presentation transcript:

Fig. 2 Reconfiguration of liquid metals into 3D structures. Reconfiguration of liquid metals into 3D structures. (A) Schematic illustrations of each step of reconfiguration. (B) Schematic illustration of two adhesion forces during reconfiguration. (C) Photograph of lift-off (left) and cutoff (right) of EGaIn from the substrate. Scale bar, 100 μm. (D) The plot of the state of line versus the nozzle lift-off velocity. (E) Optical micrographs of reconfiguration. The printed horizontal line (left) is lifted off and reconfigured (right). Scale bars, 200 μm. (F) SEM images of reconfigured square coils. The end of the inner line in the square coil (left) is lifted and reconfigured (right). Scale bars, 200 μm. (G) SEM images of 3D bridges of EGaIn. Scale bar, 500 μm. Inset: Magnified SEM image of 3D bridge. Scale bar, 200 μm. (H) Plots of the applied biases and responding current densities in EGaIn. (Photo credit: Young-Geun Park, Yonsei University). Young-Geun Park et al. Sci Adv 2019;5:eaaw2844 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).