Pawel Gniewek, Andrzej Kolinski  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Advertisements

Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Young Min Rhee, Vijay S. Pande  Biophysical Journal 
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament
Numerical Study of the Entropy Loss of Dimerization and the Folding Thermodynamics of the GCN4 Leucine Zipper  Jorge Viñals, Andrzej Kolinski, Jeffrey.
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Diffusion in a Fluid Membrane with a Flexible Cortical Cytoskeleton
Xuan-Yu Meng, Hong-Xing Zhang, Diomedes E. Logothetis, Meng Cui 
Molecular Dynamics Free Energy Calculations to Assess the Possibility of Water Existence in Protein Nonpolar Cavities  Masataka Oikawa, Yoshiteru Yonetani 
A Model of H-NS Mediated Compaction of Bacterial DNA
Local Geometry and Elasticity in Compact Chromatin Structure
Phase Transitions in Biological Systems with Many Components
William Y.C. Huang, Han-Kuei Chiang, Jay T. Groves  Biophysical Journal 
Volume 104, Issue 1, Pages (January 2013)
Folding of the Protein Domain hbSBD
Volume 106, Issue 6, Pages (March 2014)
Meng Qin, Jian Zhang, Wei Wang  Biophysical Journal 
Volume 114, Issue 1, Pages (January 2018)
Regulation of Contraction by the Thick Filaments in Skeletal Muscle
Blind Test of Physics-Based Prediction of Protein Structures
Volume 110, Issue 11, Pages (June 2016)
Molecular Recognition of CXCR4 by a Dual Tropic HIV-1 gp120 V3 Loop
G. Fiorin, A. Pastore, P. Carloni, M. Parrinello  Biophysical Journal 
J.L. Robertson, L.G. Palmer, B. Roux  Biophysical Journal 
Thomas Gurry, Paul S. Nerenberg, Collin M. Stultz  Biophysical Journal 
Volume 108, Issue 7, Pages (April 2015)
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Volume 95, Issue 9, Pages (November 2008)
Comparative Studies of Microtubule Mechanics with Two Competing Models Suggest Functional Roles of Alternative Tubulin Lateral Interactions  Zhanghan.
Irina V. Dobrovolskaia, Gaurav Arya  Biophysical Journal 
Ronen Zangi, Marcel L. de Vocht, George T. Robillard, Alan E. Mark 
Yuliang Zhang, Yuri L. Lyubchenko  Biophysical Journal 
Yuguang Mu, Lars Nordenskiöld, James P. Tam  Biophysical Journal 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Shelly Tzlil, Diana Murray, Avinoam Ben-Shaul  Biophysical Journal 
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Dynamics of Active Semiflexible Polymers
Coarse-Grained Modeling of Mucus Barrier Properties
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
On the Role of Acylation of Transmembrane Proteins
Volume 97, Issue 9, Pages (November 2009)
Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin—Molecular Dynamics Simulations of the Ground State and the M-Intermediate  Sergei Grudinin,
Volume 114, Issue 1, Pages (January 2018)
Ion-Induced Defect Permeation of Lipid Membranes
Robust Driving Forces for Transmembrane Helix Packing
Effect of Grafting on Aggregation of Intrinsically Disordered Proteins
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Volume 99, Issue 11, Pages (December 2010)
Coupling of S4 Helix Translocation and S6 Gating Analyzed by Molecular-Dynamics Simulations of Mutated Kv Channels  Manami Nishizawa, Kazuhisa Nishizawa 
Volume 111, Issue 11, Pages (December 2016)
Volume 104, Issue 2, Pages (January 2013)
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Unlinking of Supercoiled DNA Catenanes by Type IIA Topoisomerases
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Dependence of Protein Folding Stability and Dynamics on the Density and Composition of Macromolecular Crowders  Jeetain Mittal, Robert B. Best  Biophysical.
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Volume 99, Issue 11, Pages (December 2010)
Shayantani Mukherjee, Sean M. Law, Michael Feig  Biophysical Journal 
A Model of H-NS Mediated Compaction of Bacterial DNA
Volume 98, Issue 4, Pages (February 2010)
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Seongwon Kim, Takako Takeda, Dmitri K. Klimov  Biophysical Journal 
Volume 85, Issue 3, Pages (September 2003)
Volume 98, Issue 3, Pages (February 2010)
Dynamic Role of Cross-Linking Proteins in Actin Rheology
Evolution of Specificity in Protein-Protein Interactions
Presentation transcript:

Coarse-Grained Monte Carlo Simulations of Mucus: Structure, Dynamics, and Thermodynamics  Pawel Gniewek, Andrzej Kolinski  Biophysical Journal  Volume 99, Issue 11, Pages 3507-3516 (December 2010) DOI: 10.1016/j.bpj.2010.09.047 Copyright © 2010 Biophysical Society Terms and Conditions

Figure 1 Local chain modifications in the Monte Carlo sampling scheme. (A) Three-bond permutation. (B) One-bead kink. (C) Pivot for a single terminal segment. (D) Pivot for two terminal segments. (E) Pivot for three terminal segments. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 2 A snapshot of 77 mucin chains in a periodic Monte Carlo box. For clarity, the chains are smoothened by replacing coordinates of lattice polymer units with average coordinates of three subsequent segments. Blue segments correspond to polar domains, red segments to hydrophobic domains, and yellow segments to cysteine-rich domains. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 3 Possible mucin chain topologies in a mucus system. (A) Free chain. (B) Bridge. (C) Dangling chain. (D) Loop. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 4 Heat capacity as a function of temperature for C = 5% concentration of mucins and System I. The dotted line represents smoothened data obtained by averaging of five consecutive solid circles. The transition temperature from the picture is ∼0.25. For Systems II and IV, the transition temperatures from analogous pictures are 0.77 and 0.55, respectively (data not shown). Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 5 Average energy per mucin chain as a function of temperature for the four different concentrations in System I. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 6 Average number of intrachain (solid symbols) and interchain (open symbols) interactions per chain segment (see Methods) as a function of temperature in System I at C=5% concentration of mucins. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 7 Frequency of various types of mucin network topologies (see Methods) as a function of temperature for System I at C = 5% concentration of mucins. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 8 Frequency of various types of mucin network topologies (see Methods) as a function of temperature for System II at C = 5% concentration of mucins. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 9 Frequency of various types of mucin network topologies (see Methods) as a function of temperature for System IV at C = 5% concentration of mucins. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 10 Radial distribution function for cysteine-rich and hydrophobic domains at temperature T = 0.2 for System I at C = 5% concentration of mucins. A radial distribution function of 1.0 indicates uniform, random distribution. One lattice unit corresponds to ∼25 nm in a real system. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 11 Relaxation of the end-to-end vectors of the full mucin chains for three different temperatures: T = 0.1 (solid line), T = 0.2 (dashed line), and T = 0.3 (dash-dotted line) in System I. For temperature T = 0.3, time is multiplied by 13 because of very fast relaxation. A Monte Carlo scheme time unit of the simulation process corresponds to the time required for, on average, one attempt at conformational transition per polymer segment. Log at the vertical axis means natural logarithm. Biophysical Journal 2010 99, 3507-3516DOI: (10.1016/j.bpj.2010.09.047) Copyright © 2010 Biophysical Society Terms and Conditions