Fluid Mechanics - Hydrostatics

Slides:



Advertisements
Similar presentations
Fluids AP/IB Physics.
Advertisements

Fluid Statics Why do your ears hurt when you dive deep into a pool, and how can steel float on water?
Chapter 15A - Fluids at Rest
Chapter 12 Forces & Fluids.
Liquids and Gasses Matter that “Flows”
Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion.
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Fluids - Statics Level 1 Physics. Essential Questions and Objectives Essential Questions What are the physical properties of fluid states of matter? What.
Fluid Mechanics Chapter 9.
Fluids Review.
Class Starter - AP Physics Quiz – Buoyancy 1.Please clear off your desks of everything except your data sheets, a piece of paper, a calculator and a pencil.
Liquids “water, water every where, nor any drop to drink…” - Coleridge.
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Unit 3 - FLUID MECHANICS.
Pressure in Fluid Systems
Fluids - Hydrostatics Physics 6B Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Fluid Mechanics Ellen Akers. Fluids A fluid is a substance that has the ability to flow and change its shape. Gases and liquids are both fluids. Liquids.
Terms Density Specific Gravity Pressure Gauge Pressure
Monday, Nov. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Density and Specific Gravity 2.Fluid and Pressure 3.Absolute and Relative Pressure 4.Pascal’s.
Fluids and Buoyant Force
Chapter 15 Fluid Mechanics. Density Example Find the density of an 4g mass with a volume of 2cm 3.
Chapter 8: Fluid Mechanics
Fluid Mechanics Chapter 8.
Static Fluids.
Fluids AP Physics Chapter 10.
PHYSICS 103: Lecture 17 Fluids  Gases (Air)  Liquids  Archimedes Principle Agenda for Today: Note: The next several lectures will not follow textbook.
A fluid is a state of matter in which the particles are free to move around one another. No definite shape exists. The term “fluid” encompasses liquids.
Chapter 9 Fluid Mechanics. Fluids “A nonsolid state of matter in which the atoms or molecules are free to move past each other, as in a gas or liquid.”
Fluid Mechanics - Hydrostatics AP Physics 2. States of Matter Before we begin to understand the nature of a Fluid we must understand the nature of all.
Fluids.
Solids & Fluids Relating Pressure to Solid & Fluid systems 01/30.
Monday, Nov. 17, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 17, 2003 Dr. Jaehoon Yu 1.Density and Specific.
Fluid Mechanics ICP Chapter 8. Liquids & Gases Have the ability to flow. Flow = the pieces can move around each other. Because they can flow, they are.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Fluids and Buoyant Force Chapter 8 Defining a Fluid A fluid.
Chapter 9 Fluid Mechanics. Fluids “A nonsolid state of matter in which the atoms or molecules are free to move past each other, as in a gas or liquid.”
Fluids Honors Physics. Liquids In a liquid, molecules flow freely from position to position by sliding over each other Have definite volume Do not have.
Fluids 101 Chapter 10. Fluids Any material that flows and offers little resistance to changing its shape. –Liquids –Gases –Plasma?
Preview Objectives Defining a Fluid Density and Buoyant Force Sample Problem Chapter 8 Section 1 Fluids and Buoyant Force.
Chapter 12 Outline Fluid Mechanics Density Pressure Gauge pressure Pascal’s law Buoyancy Archimedes’ principle.
Chapter 9 Fluid Mechanics. Fluids “A nonsolid state of matter in which the atoms or molecules are free to move past each other, as in a gas or liquid.”
Properties of Fluids 16-2.
Liquids Definite volume but no definite shape!. Liquids Pressure Buoyancy Archimedes’ Principle Density Effects Pascal’s Principle.
Fluids. Introduction The 3 most common states of matter are: –Solid: fixed shape and size (fixed volume) –Liquid: takes the shape of the container and.
Subdivisions of matter solidsliquidsgases rigidwill flowwill flow dense dense low density and incompressible and incompressible compressible fluids condensed.
AP Physics 2 UNIT 1 – FLUID MECHANICS. Fluid Mechanics - Hydrostatics.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Defining a Fluid Density and Buoyant Force Sample Problem Chapter 8 Section 1 Fluids.
Chapter 8 Table of Contents Section 1 Fluids and Buoyant Force
CONCEPTUAL PHYSICS Liquids.
Fluid Mechanics - Hydrostatics AP Physics B. States of Matter Before we begin to understand the nature of a Fluid we must understand the nature of all.
Density & Buoyancy Physical Characteristics of an Object.
Fluid Mechanics Chapter 8. Fluids Ability to flow Ability to change shape Both liquids and gases Only liquids have definite volume.
Chapter 11 – Forces in Fluids. Pressure The amount of pressure you exert depends on the area over which you exert force. Pressure is equal to the force.
Chapter 14 Lecture 28: Fluid Mechanics: I HW10 (problems):14.33, 14.41, 14.57, 14.61, 14.64, 14.77, 15.9, Due on Thursday, April 21.
Ying Yi PhD Chapter 11 Fluids 1 PHYS HCC. Outline PHYS HCC 2 Density and Pressure Pressure and Depth in a Static fluid Buoyant Forces and Archimedes’
Chapter 9: Fluids (mostly!)
Relating Pressure to Solid & Fluid systems
Defining a Fluid A fluid is a nonsolid state of matter in which the atoms or molecules are free to move past each other, as in a gas or a liquid. Both.
Fluid Mechanics Presentation on FLUID STATICS BY Group:
Chapter 12 Section 2.
Chapter 8 Objectives Define a fluid. Distinguish a gas from a liquid.
Fluid Mechanics - Hydrostatics
Chapter 8 Objectives Define a fluid. Distinguish a gas from a liquid.
3.2 Pressure and the Buoyant Force
Chapter 8 Objectives Define a fluid. Distinguish a gas from a liquid.
Physical Science Forces in Fluids.
Chapter 2 Forces in Fluids.
Fluid Mechanics – Buoyancy
Chapter 12 Section 2.
PHYS 1443 – Section 003 Lecture #20
Chapter 8 Preview Objectives Defining a Fluid
Presentation transcript:

Fluid Mechanics - Hydrostatics AP Physics B

States of Matter Before we begin to understand the nature of a Fluid we must understand the nature of all the states of matter: The 3 primary states of matter - solid - Definite shape and volume. - liquid -Takes the shape of its container, yet has a definite volume. - gas - Takes the shape and volume of its container. Special "states - Plasma, Bose-Einstein Condensate

Density The 3 primary states have a distinct density, which is defined as mass per unit of volume. Density is represented by the Greek letter, “RHO”, r

What is a Fluid? Examples of fluids include gases and liquids. By definition, a fluid is any material that is unable to withstand a static shear stress. Unlike an elastic solid which responds to a shear stress with a recoverable deformation, a fluid responds with an irrecoverable flow. Examples of fluids include gases and liquids.

Why fluids are useful in physics? Typically, liquids are considered to be incompressible. That is once you place a liquid in a sealed container you can DO WORK on the FLUID as if it were an object. The PRESSURE you apply is transmitted throughout the liquid and over the entire length of the fluid itself.

Pressure One of most important applications of a fluid is it's pressure- defined as a Force per unit Area

Example A water bed is 2.0 m on a side an 30.0 cm deep. (a) Find its weight if the density of water is 1000 kg/m3. (b) Find the pressure the that the water bed exerts on the floor. Assume that the entire lower surface of the bed makes contact with the floor. 1.2 m3 1200 kg 11760 N 2940 N/m2

Hydrostatic Pressure Suppose a Fluid (such as a liquid) is at REST, we call this HYDROSTATIC PRESSURE Two important points • A fluid will exert a pressure in all directions • A fluid will exert a pressure perpendicular to any surface it compacts Notice that the arrows on TOP of the objects are smaller than at the BOTTOM. This is because pressure is greatly affected by the DEPTH of the object. Since the bottom of each object is deeper than the top the pressure is greater at the bottom.

Pressure vs. Depth Fwater= Fatm + mg The weight of the object Suppose we had an object submerged in water with the top part touching the atmosphere. If we were to draw an FBD for this object we would have three forces The weight of the object The force of the atmosphere pressing down The force of the water pressing up mg Fwater Fwater= Fatm + mg

Pressure vs. Depth But recall, pressure is force per unit area. So if we solve for force we can insert our new equation in. Note: The initial pressure in this case is atmospheric pressure, which is a CONSTANT. Po=1x105 N/m2

A closer look at Pressure vs. Depth Depth below surface Initial Pressure – May or MAY NOT be atmospheric pressure ABSOLUTE PRESSURE Gauge Pressure = CHANGE in pressure or the DIFFERENCE in the initial and absolute pressure

Example a) Calculate the absolute pressure at an ocean depth of 1000 m. Assume that the density of water is 1000 kg/m3 and that Po= 1.01 x 105 Pa (N/m2). b) Calculate the total force exerted on the outside of a 30.0 cm diameter circular submarine window at this depth. 9.9x106 N/m2 2.80 x 106 N

A closed system If you take a liquid and place it in a system that is CLOSED like plumbing for example or a car’s brake line, the PRESSURE is the same everywhere. Since this is true, if you apply a force at one part of the system the pressure is the same at the other end of the system. The force, on the other hand MAY or MAY NOT equal the initial force applied. It depends on the AREA. You can take advantage of the fact that the pressure is the same in a closed system as it has MANY applications. The idea behind this is called PASCAL’S PRINCIPLE

Pascal’s Principle

Another Example - Brakes In the case of a car's brake pads, you have a small initial force applied by you on the brake pedal. This transfers via a brake line, which had a small cylindrical area. The brake fluid then enters a chamber with more AREA allowing a LARGE FORCE to be applied on the brake shoes, which in turn slow the car down.

Buoyancy When an object is immersed in a fluid, such as a liquid, it is buoyed UPWARD by a force called the BUOYANT FORCE. When the object is placed in fluid is DISPLACES a certain amount of fluid. If the object is completely submerged, the VOLUME of the OBJECT is EQUAL to the VOLUME of FLUID it displaces.

Archimedes's Principle " An object is buoyed up by a force equal to the weight of the fluid displaced." In the figure, we see that the difference between the weight in AIR and the weight in WATER is 3 lbs. This is the buoyant force that acts upward to cancel out part of the force. If you were to weight the water displaced it also would weigh 3 lbs.

Archimedes's Principle

Example A bargain hunter purchases a "gold" crown at a flea market. After she gets home, she hangs it from a scale and finds its weight in air to be 7.84 N. She then weighs the crown while it is immersed in water (density of water is 1000 kg/m3) and now the scale reads 6.86 N. Is the crown made of pure gold if the density of gold is 19.3 x 103 kg/m3? 0.98 N NO! This is NOT gold as 8000<19300 0.0001 m3 0.0001 m3 0.80 kg 8000 kg/m3