Chemsheets AS006 (Electron arrangement)

Slides:



Advertisements
Similar presentations
A2 – CHEMICAL ENERGETICS
Advertisements

BORN-HABER CYCLES A guide for A level students KNOCKHARDY PUBLISHING 2008 SPECIFICATIONS.
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges of.
Higher Chemistry Unit 1(c) Ionisation energy. After today’s lesson you should be able to: explain the meaning of the term ‘first ionisation energy’. write.
Using Born Haber Cycles to Determine Lattice Enthalpies
Enthalpy Change of formation is the enthalpy change when one mole of a compound is formed from its constituent elements under standard conditions. Enthalpy.
Title: Lesson 6 Born-Haber Cycles and Lattice Enthalpies Learning Objectives: – Understand the term lattice enthalpy – Use Born-Haber cycles to calculate.
Chapter 7 Ionic Bonding 7.1 Ionic Bonds: Donating and Accepting Electrons 7.2 Energetics of Formation of Ionic Compounds 7.3 Stoichiometry of Ionic.
Ionic Bonding  Electrons are transferred  Electronegativity differences are generally greater than 1.7  The formation of ionic bonds is always exothermic!
For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its ions in the gaseous.
Born-Haber cycles, and lattice energy
CI 4.6 – Born-Haber Cycle (C) JHUDSON For an ionic compound the lattice enthalpy is the enthalpy change when one mole of solid in its standard state.
Ionic Bonding  Electrons are transferred  Electronegativity differences are generally greater than 1.7  The formation of ionic bonds is always exothermic!
A method to calculate Lattice Enthalpies
Formation of Ionic compounds
1 Born-Haber Cycles enthalpy H magnesium chloride MgCl 2 (s) Mg 2+ (g) + 2Cl - (g) H lattice Mg (s) + Cl 2 (g) H formation H atomisation Mg (g) + Cl.
1 For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its ions in the gaseous.
27/08/2015 Ionic bonding This is where a metal bonds with a non-metal. The metal atom donates one or more electrons to the non-metal. For example, consider.
Title: Lesson 7 Lattice Enthalpies and Enthalpy Change of Solution
Born-Haber cycles L.O.:  Define and apply the terms enthalpy of formation, ionisation enthalpy, enthalpy of atomisation of an element and of a compound,
BORN-HABER CYCLES. H NaCl (s) Na + (g) + Cl - (g)  H lattice energy of formation Na (s) + ½ Cl 2 (g)  H formation  H atomisation(s) Na (g) + Cl (g)
Unlocking Potential TechDis Accessibility Essentials 3: Creating Accessible Presentations This presentation on ‘The Born-Haber Cycle’ highlights how complex.
Born-Haber Cycle Section 15.2 (AHL). Lattice Enthalpy Of an ionic crystal: the heat energy absorbed (at constant pressure) when 1 mol of solid ionic compound.
1 7.1Formation of Ionic Bonds: Donating and Accepting Electrons 7.2 Energetics of Formation of Ionic Compounds 7.3 Stoichiometry of Ionic Compounds 7.4Ionic.
Mg(s) + C l 2 (g) MgC l 2 (s) Mg(g) + C l 2 (g) Mg(g) + 2C l (g) Mg 2+ (g) + 2C l – (g) 7 Mg + (g) + 2C l (g) Mg 2+ (g) + 2C l (g) Enthalpy.
Basic Concepts of Chemical Bonding
Section 12.4 Bonding in Solids
IB1 Chemistry HL Energetics Why do chemical reactions happen?
Unit 2 Atoms and Bonding 2.81 Ionic Bonding Textbook ch 8.2.
Energetics HL only 15.1 Standard Enthalpy Changes Standard Enthalpy of Formation,  H Ϧ f The enthalpy change when 1 mole of a compound is produced from.
© A Jul-12. H NaCl (s) Na + (g) + Cl - (g)  H lattice energy of formation Na (s) + ½ Cl 2 (g)  H formation  H atomisation(s)
Lattice enthalpy Textbook reference: p Born-Haber cycles L.O.:  Explain and use the term: lattice enthalpy.  Use the lattice enthalpy of a simple.
Unit F321 Module Electron Structure. Atomic Structure Protons, neutrons, electrons How to make ions Relative atomic mass.
Advanced Higher Chemistry Unit 2
Bonding Models – Ionic Bonding
Chapter 8 Chemical Bonding I: Basic Concepts
Thermochemistry AH Chemistry, Unit 2(c).
Chemsheets AS006 (Electron arrangement)
THERMOCHEMISTRY.
Ionic structures L.O. To be able to describe the energy changes involved in forming ionic compounds.
IONIC RADIUS WHY DO ATOMS BOND TO FORM COMPOUNDS?.
For an ionic compound the lattice enthalpy is the heat
Chemical Bonds Chemical bonds are strong electrostatic forces holding atoms or ions together, which are formed by the rearrangement (transfer or sharing)
Lattice enthalpy For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its.
Chapter 15.1 notes: Energy Cycles Chapter 15.2: entropy & spontaneity
15.1 Energy cycles Representative equations can be used for enthalpy/energy of hydration, ionization, atomization, electron affinity, lattice, covalent.
Chapter 8 Chemical Bonding
Ionic Bonding Lattice Energy
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges.
Energy Effects in Binary Ionic Compounds and Lattice Energy
Lewis Model Bonding models and ionic bonds
Lattice Energies AP Material.
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges.
Ions & formation of Ionic compounds
Born-Haber Cycles ΔHat (Na(s)) 109 kJ mol-1 Bond dissociation (Cl2(g))
LEWIS STRUCTURES BONDS IONIC BONDING
Born-Haber Cycle.
Thermodynamics Definitions Forming Ionic Compounds
A guide for A level students KNOCKHARDY PUBLISHING
A guide for A level students KNOCKHARDY PUBLISHING
Why is the periodic table shaped like it is and how are the elements arranged?
ENERGETICS /THERMOCHEMISTRY (AS)
Lattice Energy, DUlattice
15.2 Born-Haber Cycle Define and apply the terms lattice enthalpy, and electron affinity Explain how the relative sizes and the charges.
IB Topics 5 & 15 PART 3: Energy Cycles
8.5 Energy Effects in Ionic Compounds
- Chemical Bonds, Lewis Symbols, and the Octet Rule - Ionic Bonding
Chapter 9 Chemical Bonding I: Lewis Theory
IONIC RADIUS WHY DO ATOMS BOND TO FORM COMPOUNDS?.
Presentation transcript:

Chemsheets AS006 (Electron arrangement) 10/06/2019 BORN-HABER CYCLES

Lattice enthalpy For an ionic compound the lattice enthalpy is the heat energy released when one mole of solid in its standard state is formed from its ions in the gaseous state. Eg. Na+(g) + Cl-(g) NaCl(s) - L.E cannot be determined directly enthalpy cycle (Hess’s Law) links the data. MOLAR HEATS OF FORMATION - enthalpy cycle is based on the formation of the compound from its elements in standard states.

Hformation = sum of all other H’s Metal ions, e-’s, non-metal atoms (g) H H ionisation energy/ies H electron affinity/ies Gas atoms (g) Gas ions (g) Hatomisation(s) H lattice energy of formation Elements (std states) H formation Ionic compound (s) Hformation = sum of all other H’s

kJ H= +107kJmol-1 Atomisation of sodium +800 +700 +600 +500 +400 +300 +200 Na(g) + 1/2 Cl2(g) +100 H= +107kJmol-1 Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 Atomisation of sodium

Atomisation of chlorine kJ +800 +700 +600 +500 +400 +300 Na(g) + Cl(g) +200 H = +121kJmol-1 Na(g) + 1/2 Cl2(g) +100 Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 Atomisation of chlorine

e- leaving e- e- e- leaving e- e- e- + kJ H = +502kJmol-1 +800 Na+(g) + Cl(g) +700 e- leaving e- e- +600 e- leaving +500 e- e- +400 H = +502kJmol-1 e- +300 Na(g) + Cl(g) +200 + Na(g) + 1/2 Cl2(g) +100 Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 First Ionisation of sodium

First electron affinity of chlorine kJ kJ kJ +800 +800 +800 Na+(g) + Cl(g) +700 +700 +700 +600 +600 +600 H = -355kJmol-1 +500 +500 +500 e- +400 +400 +400 Na+(g) + Cl-(g) +300 +300 +300 Na(g) + Cl(g) Na(g) + Cl(g) Na(g) + Cl(g) +200 +200 +200 - e- Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) +100 +100 +100 Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) -400 -300 -200 -100 -400 -300 -200 -100 -400 -300 -200 -100 First electron affinity of chlorine

- - - - - kJ kJ kJ + + + + H = -786 kJmol-1 +800 +800 +800 +700 +700 Na+(g) + Cl(g) +700 +700 +700 +600 +600 +600 +500 +500 +500 +400 +400 +400 Na+(g) + Cl-(g) +300 +300 +300 Na(g) + Cl(g) Na(g) + Cl(g) Na(g) + Cl(g) +200 +200 +200 - - Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) Na(g) + 1/2 Cl2(g) + +100 +100 +100 + - + Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) Na(s) + 1/2 Cl2(g) - + - -400 -300 -200 -100 -400 -300 -200 -100 -400 -300 -200 -100 H = -786 kJmol-1 Lattice enthalpy for sodium chloride NaCl(s)

CaO Ca2+(g) + O2– (g) Ca2+(g) + 2e– + O (g) Ca+(g) + e– + O(g) 2nd electron affinity of O 2nd ionisation of Ca 1st electron affinity of O Ca+(g) + e– + O(g) 1st ionisation of Ca Ca2+(g) + e– + O – (g) Ca(g) + O(g) atomisation of O Ca(g) + ½O2(g) Lattice formation of CaO atomisation of Ca Ca(s) + ½O2(g) formation of CaO CaO (s)

CaO Ca2+(g) + O2– (g) Ca2+(g) + 2e– + O (g) Ca+(g) + e– + O(g) 2nd electron affinity of O 2nd ionisation of Ca 1st electron affinity of O –142 1150 844 Ca+(g) + e– + O(g) 1st ionisation of Ca Ca2+(g) + e– + O – (g) 590 Ca(g) + O(g) atomisation of O 248 Ca(g) + ½O2(g) Lattice formation of CaO atomisation of Ca X 193 Ca(s) + ½O2(g) –635 formation of CaO CaO (s) Hf CaO= –635; Atomisation calcium = +193; Atomisation oxygen = +248 1st IE Ca = +590; 2nd IE Ca = +1150 1st e- affinity of oxygen = –142 kJ mol-1 2nd e- affinity= +844

CaO Hlattice = – 635 – 193 – 248 – 590 – 1150 + 142 – 844 Ca2+(g) + O2– (g) Ca2+(g) + 2e– + O (g) 2nd electron affinity of O 2nd ionisation of Ca 1st electron affinity of O –142 1150 844 Ca+(g) + e– + O(g) 1st ionisation of Ca Ca2+(g) + e– + O – (g) 590 Ca(g) + O(g) atomisation of O 248 Ca(g) + ½O2(g) Lattice formation of CaO atomisation of Ca X 193 Ca(s) + ½O2(g) –635 formation of CaO CaO (s) – 635 = 193 + 248 + 590 + 1150 – 142 + 844 + Hlattice – 635 = 193 + 248 + 590 + 1150 – 142 + 844 + Hlattice Hlattice = – 635 – 193 – 248 – 590 – 1150 + 142 – 844 = – 3518 kJ mol-1 © www.chemsheets.co.uk A2 1015 19-May-2016

MgBr2 Mg2+(g) + 2e– + 2Br (g) Mg+(g) + e– + 2Br(g) Mg2+(g) 2Br – (g) 2nd ionisation of Mg 2 x electron affinity of Br Mg+(g) + e– + 2Br(g) Mg2+(g) 2Br – (g) 1st ionisation of Mg Mg(g) + 2Br(g) 2 x atomisation of Br Mg(g) + Br2(l) Lattice formation of MgBr2 atomisation of Mg Mg(s) + Br2(l) formation of MgBr2 MgBr2 (s)

MgBr2 Hformation = – 518 kJ mol-1 Mg2+(g) + 2e– + 2Br (g) 2nd ionisation of Mg 2 x electron affinity of Br 1450 2(–342) Mg+(g) + e– + 2Br(g) Mg2+(g) 2Br – (g) 1st ionisation of Mg 736 Mg(g) + 2Br(g) 2 x atomisation of Br 2(112) Mg(g) + Br2(l) Lattice formation of MgBr2 atomisation of Mg 150 –2394 Mg(s) + Br2(l) X formation of MgBr2 MgBr2 (s) Hformation = 150 + 2(112) + 736 + 1450 + 2(–342) –2394 Hformation = 150 + 2(112) + 736 + 1450 + 2(–342) –2394 Hformation = – 518 kJ mol-1 © www.chemsheets.co.uk A2 1015 19-May-2016

KCl Hformation = 90 + 121 + 418 – 364 – 710 = – 445 kJ mol-1 K+ (g) + e- + Cl (g) H 1st ionisation of K –364 1st electron affinity of Cl 418 K (g) + Cl (g) K+ (g) + Cl- (g) Atomisation of Cl 121 K (s) + ½ Cl2 (g) Lattice enthalpy of formation of KCl –710 Atomisation of K 90 K (s) + ½ Cl2 (g) ? Formation of KCl KCl (s) Hformation = 90 + 121 + 418 – 364 – 710 = – 445 kJ mol-1

Na2S Hlattice = – 370 – 2(107) – 279 – 2(496) + 200 – 649 2Na+(g) + S2–(g) 2nd electron affinity of S 2Na+(g) + 2e– + S(g) 1st electron affinity of S 2 x 1st ionisation of Na 649 –200 2(496) 2Na+(g) + e– +S –(g) 2Na(g) + S(g) atomisation of S 279 2Na(g) + S(s) Lattice formation of Na2S Na2S 2 x atomisation of Na ? 2(107) 2Na(s) + S(s) formation of Na2S –370 Na2S(s) – 370 = 2(107) + 279 + 2(496) – 200 + 649 + Hlattice Hlattice = – 370 – 2(107) – 279 – 2(496) + 200 – 649 = – 2304 kJ mol-1

CaBr2 Hformation = 193 + 2(112) + 590 + 1150 – 2(342) – 2125 Ca2+(g) + 2e– + 2Br (g) 2nd ionisation of Ca 2 x electron affinity of Br H 1150 2(–364) Ca+(g) + e– + 2Br(g) Ca2+(g) + 2Br – (g) 1st ionisation of Ca 590 Ca(g) + 2Br(g) 2 x atomisation of Ca 2(121) Ca(g) + Br2(l) Lattice formation of CaBr2 atomisation of Ca 193 –2125 Ca(s) + Br2(l) ? formation of CaBr2 CaBr2 (s) Hformation = 193 + 2(112) + 590 + 1150 – 2(342) – 2125 = – 652 kJ mol-1

Al2O3 2Al3+(g) + 6e– + 6O(g) 2Al3+(g) + 6O2–(g) 2Al2+(g) + 4e– + 3O(g) 2 x 3rd ionisation of Al 2(2740) 3 x 1st electron affinity of O 2Al2+(g) + 4e– + 3O(g) 3 x 2nd electron affinity of O 2 x 2nd ionisation of Al 3(–142) 3(844) 2(1820) 2Al+(g) + 2e– + 3O(g) 2Al3+(g) + 3e– + 3O –(g) 2 x 1st ionisation of Al 2(577) 2Al(g) + 3O(g) Lattice formation of Al2O3 3 x atomisation of O 3(248) 2Al(g) + 3/2O2(g) ? Al2O3 2 atomisation of Al 2(314) 2Al(s) + 3/2O2(g) formation of Al2O3 –1669 Al2O3(s) –1669 = 2(314) + 3(248) + 2(577) + 2(1820) + 2(2740) + 3(-142) + 3(844) + H H = –1669 – 2(314) – 3(248) – 2(577) – 2(1820) – 2(2740) + 3(142) – 3(844) = – 15421 kJ mol-1

CaI2 Ca2+(g) + 2e– + 2I (g) 2nd ionisation of Ca 2 x electron affinity of I H 1150 2 X Ca+(g) + e– + 2I(g) Ca2+(g) + 2I – (g) 1st ionisation of Ca 590 Ca(g) + 2I(g) 2 x atomisation of I 2(107) Ca(g) + I2(s) Lattice formation of CaI2 atomisation of Ca 193 –2054 Ca(s) + I2(s) –535 formation of CaI2 CaI2 (s) – 535 = 193 + 2(107) + 590 + 1150 + 2X – 2054 2X = – 535 – 193 – 2(107) – 590 – 1150 – 2054 2X = - 628 X = – 314 kJ mol-1

CuO X = – 155 – 248 – 745 – 1960 + 142 – 844 + 4149 = + 339 kJ mol-1 Cu2+(g) + O2–(g) Cu2+(g) + 2e– + O(g) 2nd electron affinity of O 2nd ionisation of Cu 1st electron affinity of O 1960 844 Cu+(g) + e– + O(g) –142 1st ionisation of Cu Cu2+(g) + e– +O –(g) 745 Cu(s) + O(g) Lattice formation of CuO atomisation of O 248 Cu(g) + ½O2(g) –4149 CuO atomisation of Cu X Cu(s) + ½O2(g) formation of CuO –155 CuO(s) – 155 = X + 248 + 745 + 1960 – 142 + 844 – 4149 X = – 155 – 248 – 745 – 1960 + 142 – 844 + 4149 = + 339 kJ mol-1

AgI Ag+ (g) + e- + I (g) H 1st ionisation of Ag –314 1st electron affinity of I 732 Ag (g) + I (g) Ag+ (g) + I- (g) Atomisation of I 107 Ag (s) + ½ I2 (s) Lattice enthalpy of formation of AgI ? Atomisation of Ag 289 Ag (s) + ½ I2 (s) –62 Formation of AgI AgI (s) –62 = 289 + 107 + 732 – 314 + HLE HLE = –289 – 107 – 732 + 314 – 62 = –876 kJ mol-1