Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 8 Chemical Bonding

Similar presentations


Presentation on theme: "Chapter 8 Chemical Bonding"— Presentation transcript:

1 Chapter 8 Chemical Bonding

2  Na Cl + 1s22s22p63s1 1s22s22p63s23p5 Na+ Cl– + 1s22s22p6

3 Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+

4 Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+ Na+ Cl–

5 Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+ Cl– Na+ Na+ Cl– =

6 Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional Na+ Cl– Cl– Na+ Na+ = Cl– = Na+

7 Ionic Bond Cl– electrostatic attraction between oppositely charged ions non-directional strength directly proportional to charges of ions and inversely proportional to distance between ion centers Na+

8 E Q c a d E = ionic bond strength Qc = charge on cation Qa = charge on anion (absolute value) d = distance between centers of ions

9 E Q c a d NaCl Na Cl–

10 E Q c a d NaCl Na Cl– CaCl Ca Cl–

11 E Q c a d NaCl Na Cl– CaCl Ca Cl– CaS Ca Cl–

12 E Q c a d NaCl Na Cl– CaCl Ca Cl– CaS Ca S–2 Al2S Al S2–

13 E Q c a d d Na+ F–

14 E Q c a d d d Cl– Na+ F– Na+

15 E Q c a d d d Cl– Na+ F– Na+ d Br– Na+

16 E Q c a d d d Cl– Na+ F– Na+ d d I– Br– Na+ Na+

17 Lattice Energy energy required to separate 1 mol of an ionic compound into its gaseous ions eg MgF2(s)  Mg2+(g) + 2F–(g) Hlattice = 2910 kJ/mol for NaF, Hlattice = kJ/mol for KF, Hlattice = kJ/mol WHY???

18 Ionic Bond Formation Born Haber Cycle
Breaks formation of an ionic compound from its elements into a series of theoretical steps and considers the energetics of each Example: consider formation of NaCl Na(s) + 1/2Cl2(g)  NaCl(s) H° = –410.9 kJ

19 725.4 E (kJ) 376.4 229.4 107.7 Na(s) + 1/2Cl2(g) –410.9

20 E (kJ) Na(g) + 1/2Cl2(g) Hsub, Na Na(s) + 1/2Cl2(g) 725.4 376.4 229.4
107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9

21 E (kJ) Na(g) + Cl(g) Na(g) + 1/2Cl2(g) Hatom,Cl Hsub, Na
725.4 E (kJ) 376.4 Na(g) + Cl(g) 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9

22 Na+(g) + Cl(g) + e– E (kJ) IENa Na(g) + Cl(g) Na(g) + 1/2Cl2(g)
725.4 E (kJ) IENa 376.4 Na(g) + Cl(g) 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9

23 Na+(g) + Cl(g) + e– EACl E (kJ) Na+(g) + Cl–(g) IENa Na(g) + Cl(g)
725.4 EACl E (kJ) Na+(g) + Cl–(g) IENa 376.4 Na(g) + Cl(g) 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) –410.9

24 Na+(g) + Cl(g) + e– EACl E (kJ) Na+(g) + Cl–(g) IENa Na(g) + Cl(g)
725.4 EACl E (kJ) Na+(g) + Cl–(g) IENa 376.4 Na(g) + Cl(g) –Hlattice 229.4 Na(g) + 1/2Cl2(g) Hatom,Cl 107.7 Hsub, Na Na(s) + 1/2Cl2(g) NaCl(s) –410.9

25 H°f = 107.7kJ + 121.7kJ + 496.0kJ + –349.0kJ – 787.3 kJ
H°f = Hsublimation, Na + Hatom, Cl + IE1, Na + EACl – Hlattice, NaCl H°f = 107.7kJ kJ kJ + –349.0kJ – kJ H°f = –410.9 kJ

26 Lewis Symbols atomic symbol indicates element
symbol considered to have 4 sides valence electrons indicated by dots maximum 2 dots per side

27 Examples Na

28 Examples Na Na

29 Examples Na Na Na

30 Examples Na Na Na Na

31 Examples Na Na Na Na Ca Ca Ca Ca Ca

32 Examples  Na   Na Na Na     Ca Ca    Ca   Ca Ca     
Al Ca

33 Na + Cl

34 + Na + Na + Cl Cl

35 + Na + Na + Cl Cl Cl Ca + Cl

36 –  +      Na  + Na + Cl Cl        –      Cl   
2+ Ca + Ca + Cl Cl

37 1s22s22p5 1s22s22p5 + F F

38 1s22s22p5 1s22s22p5 + F F

39 1s22s22p5 1s22s22p5 1s22s22p4 1s22s22p6 + + + F F F F

40 1s22s22p5 1s22s22p5 1s22s22p4 1s22s22p6 + + + F F F F + + + F F F F

41 1s22s22p5 1s22s22p5 1s22s22p4 1s22s22p6 + + + F F F F + + + F F F F F F shared e– pair

42 y y x x 2px 2px y y x

43 F F shared e– pair F F

44 Covalent Bond attractive force between atoms resulting from sharing electron pair(s) very strong highly directional

45 single bond: sharing 1 e– pair
double bond: sharing 2 e– pairs triple bond: sharing 3 e– pairs

46 O O O O

47 O O O O O O

48 O O O O O O N N N N

49 O O O O O O N N N N N N

50 + H H H H

51 + H H H H y y x F F

52 Pure Covalent Bond + H H H H y y x F F

53 y y x Br F

54 y y x + – Br F

55 y y x + – Br F Polar Covalent Bond Unequal Sharing of Electron Pair(s)

56 Bonding Continuum pure ionic polar covalent pure covalent BrF CsF H2

57 Electronegativity The ability of an atom to attract electron density towards itself increases from L to R across a period and up a group

58 Bonding Continuum pure covalent pure ionic polar covalent nonpolar covalent ionic 2.0 0.5 CsF (3.9) BrF (1.3) H2 (0)  E’neg

59 KCl  E,neg. = 2.9 – 0.9 = 2.0 ionic HCl  E,neg. = 2.9 – 2.1 = 0.8 polar covalent BrCl  E,neg. = 2.9 – 2.8 = 0.1 nonpolar covalent Br2  E,neg. = 2.9 – 2.9 = 0 pure covalent

60 Dipole Moment results from separation of charge polar bonds have
increases as  E’neg. increases

61 Dipole Moment results from separation of charge polar bonds have
increases as  E’neg. increases indicated by crossed arrow pointing from positive end to negative end of dipole

62 H I 2.1 2.2

63 + – H I 2.1 2.2

64 + – H I  E’neg. = 0.1

65 + – H I  E’neg. = 0.1 H Cl 2.1 2.9

66 + – H I  E’neg. = 0.1 + – H Cl 2.1 2.9

67 + – H I  E’neg. = 0.1 + – H Cl  E’neg. = 0.8

68 + – H I  E’neg. = 0.1 + – H Cl  E’neg. = 0.8 H F 2.1 4.1

69 + – H I  E’neg. = 0.1 + – H Cl  E’neg. = 0.8 + – H F 2.1 4.1

70 + – H I  E’neg. = 0.1 + – H Cl  E’neg. = 0.8 + – H F  E’neg. = 2.0

71 Lewis Structures shorthand notation for placement of atoms and valence electrons in molecules

72 Drawing Lewis Structures
arrange atoms in formula such that element with only 1 atom in formula is in center surrounded by other atoms in formula connect central atom to outer atoms by single covalent bonds total valence electrons in molecule add valence e– of all atoms add 1 e– for each – charge subtract 1 e– for each + charge subtract 2 e– for each bond

73 use remaining e– to complete octets of outer atoms
place remaining e– on central atom, in pairs when possible check form multiple bonds if necessary

74 Octet Rule all atoms require 8 valence electrons EXCEPTIONS H, He 2 e–
B, Al 6 e– Z  or more e–

75 Examples draw Lewis structures for each of the following

76 Methane, CH4

77 Methane, CH4 H H C H H

78 Methane, CH4 H H C H H

79 Methane, CH4 C 4 e– H H 4 H 4 e– C 8 e– H H

80 Methane, CH4 C 4 e– H H 4 H 4 e– C 8 e– H H 4 bonds – 8 e– 0 e–

81 SnCl3– Cl Sn Cl Cl

82 SnCl3– Cl Sn Cl Cl

83 SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl

84 SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e–

85 SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e–

86 SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e– – 18 e– 2 e–

87 SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e– – 18 e– 2 e– – 2 e–

88 SnCl3– Cl Sn 4 e– 3 Cl 21 e– Sn 25 e– Cl Cl 1 – 1 e– 26 e– 3 bonds – 6 e– 20 e– – 18 e– 2 e– – 2 e–

89 XeF4 F F Xe F F

90 XeF4 Xe 8 e– F F 4 F 28 e– Xe 36 e– F F 4 bonds – 8 e– 28 e–

91 XeF4 Xe 8 e– F F 4 F 28 e– Xe 36 e– F F 4 bonds – 8 e– 28 e– – 24 e– 4 e–

92 XeF4 Xe 8 e– F F 4 F 28 e– Xe 36 e– F F 4 bonds – 8 e– 28 e– – 24 e– 4 e– – 4 e– 0 e–

93 SF6

94 SF6 S 6 e– F F 6 F 42 e– F S F 48 e– F F 6 bonds –12 e– 36 e– – 36 e– 0 e–

95 O2 O O 2 O 12 e– 1 bond – 2 e– 10 e–

96 O2 O O 2 O 12 e– 1 bond – 2 e– 10 e– – 10 e– 0 e–

97 O O O O O O

98 Form Multiple Bond O O

99 Form Multiple Bond O O

100 Form Multiple Bond O O O O

101 N2 N N 2 N 10 e– 1 bond – 2 e– 8 e–

102 N2 N N 2 N 10 e– 1 bond – 2 e– 8 e– – 8 e– 0 e–

103 Form Multiple Bonds N N

104 Form Multiple Bonds N N N N

105 Form Multiple Bonds N N N N N N

106 CO2 O C O C 4 e– 2 O 12 e– 16 e– 2 bonds – 4 e– 12 e– – 12 e– 0 e–

107 O C O O C O O C O

108 Resonance more than one valid Lewis structure
each structure called resonance structure

109 O C O O C O O C O

110 Resonance Hybrid average of resonance structures
written in square brackets

111 Bond Order 1, single bond 2, double bond 3, triple bond

112 O C O O C O O C O B.O.left bond = = 2 3

113 O C O O C O O C O B.O.left bond = = 2 3 B.O.right bond = = 2 3

114 O C O O C O O C O B.O.left bond = = 2 3 B.O.right bond = = 2 3 O C O

115 O C O O C O O C O B.O.left bond = = 2 3 B.O.right bond = = 2 3 O C O

116 CO32–

117 CO32–           O O O       C C C          

118 CO32–           O O O       C C C          
B.O.each bond = = 1.3 3

119 CO32–           O O O       C C C          
B.O.each bond = = 1.3 3 2– O C O O

120 Bond Strength and Bond Length
triple < double < single bond strength single < double < triple

121 Length (Å) C C 1.54 C C 1.34 C C 1.20

122 Length (Å) Strength (kJ/mol) C C 1.54 348 C C 1.34 614 C C 1.20 839

123 Formal Charge an accounting tool for electron ownership
(# valance e– in free atom) – (# e– in lone pairs on atom) – 1/2(# bonded e– on atom)

124 Best structure has zero FC on all atoms lowest FC possible
–FC on most electronegative atoms and +FC on least electronegative atoms

125 For example, consider thiocyanate ion

126 For example, consider thiocyanate ion
SCN–

127 For example, consider thiocyanate ion
SCN– N C S C S N S N C

128 For example, consider thiocyanate ion
SCN– N C S C S S N C N FCN = 5 – 4 – 2 = –1

129 For example, consider thiocyanate ion
SCN– N C S C S C N S N FCN = 5 – 4 – 2 = –1 FCC = 4 – 0 – 4 = 0

130 For example, consider thiocyanate ion
SCN– N C C S C S S N N FCN = 5 – 4 – 2 = –1 FCC = 4 – 0 – 4 = 0 FCS = 6 – 4 – 2 = 0

131 For example, consider thiocyanate ion
SCN– –1 N C C S C S S N N FCN = 5 – 4 – 2 = –1 FCC = 4 – 4 – 2 = –2 FCS = 6 – 0 – 4 = +2

132 For example, consider thiocyanate ion
SCN– –1 –2 +2 –1 N C S C S N S N C FCN = 5 – 0 – 4 = +1 FCC = 4 – 4 – 2 = –2 FCS = 6 – 4 – 2 = 0

133 For example, consider thiocyanate ion
SCN– –1 –2 +2 –1 +1 –2 N C S C S N S N C

134 For example, consider thiocyanate ion
SCN– –1 –2 +2 –1 +1 –2 N C S C S N S N C best structure because lowest FC and –FC on most electronegative atom


Download ppt "Chapter 8 Chemical Bonding"

Similar presentations


Ads by Google