PERLE@Orsay – Overview Alex Bogacz JLAB, Aug. 14, 2017.

Slides:



Advertisements
Similar presentations
MCDW 2008, JLAB, Dec 8-12, Multi-pass Droplet Arc Design Guimei WANG (Muons Inc./ODU) Dejan Trbojevic (BNL) Alex Bogacz (JLAB)
Advertisements

1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Recirculating pass optics V.Ptitsyn, D.Trbojevic, N.Tsoupas.
ERHIC Main Linac Design E. Pozdeyev + eRHIC team BNL.
LHeC Test Facility Meeting
ELIC Low Beta Optics with Chromatic Corrections Hisham Kamal Sayed 1,2 Alex Bogacz 1 1 Jefferson Lab 2 Old Dominion University.
Overview of ERL MEIC Cooler Design Studies S.V. Benson, Y. Derbenev, D.R. Douglas, F. Hannon, F. Marhauser, R. A Rimmer, C.D. Tennant, H. Zhang, H. Wang,
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz EIC14 Workshop, Jefferson Lab, March 20,
Accelerator Science and Technology Centre POST-LINAC BEAM TRANSPORT AND COLLIMATION FOR THE UK’S NEW LIGHT SOURCE PROJECT D. Angal-Kalinin,
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
Future Circular Collider Study Kickoff Meeting CERN ERL TEST FACILITY STAGES AND OPTICS 12–15 February 2014, University of Geneva Alessandra Valloni.
Beam Optics of the TTF2 Nina Golubeva DESY. Beam optics from the BC2 up to the undulators General introduction to linear optics: – constraints for different.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 LHeC Workshop, Chavennes-de-Bogis, June 26, 2015 LHeC.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Acceleration in.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
Frank Stulle, ILC LET Beam Dynamics Meeting CLIC Main Beam RTML - Overview - Comparison to ILC RTML - Status / Outlook.
WG2: Beam Dynamics, Optics and Instrumentation – Summary
Beam Commissioning Adam Bartnik.
Progress on the Linac and RLAs
JLEIC simulations status April 3rd, 2017
Parametric Resonance Ionization Cooling of Muons
LCLS2sc MAD files: Injector to Bypass Line
PERLE - Current Accelerator Design
Options and Recommendations for TL and Dumps
‘Multi-pass-Droplet’ Experiment
Main magnets for PERLE Test Facility
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
12 GeV CEBAF.
Muon RLA - Design Status and New Options
Linac and RLAs – Overview of NF-IDS
Re-circulating Linac Option
Electron Ring Optics Design
Electron Source Configuration
LHC (SSC) Byung Yunn CASA.
Progress on the Linac and RLAs
Collider Ring Optics & Related Issues
Optics ‘Scrapbook’ for ERL Test Facility
RLA WITH NON-SCALING FFAG ARCS
MEBT1&2 design study for C-ADS
Optics and Layout of Alex Bogacz Workshop, Orsay, Feb. 23, 2017.
Accelerator and Interaction Region
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
Muon RLA - Design Status and New Options
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Common Beam Dynamics Issues - PERLE/JLEIC Cooler
Muon RLA - Design Status and Simulations
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
Cooler Ring Design Status - July 2017
Booster to Ion Ring Transfer Line
Large Ion Booster Re-design Update
PERLE - Current Accelerator Design
Presentation transcript:

PERLE@Orsay – Overview Alex Bogacz JLAB, Aug. 14, 2017

PERLE - Newly Proposed Test Facility CDR Alex Bogacz JLAB, Aug. 14, 2017

PERLE Downsizing CDR (900 MeV) ‘Lean’(400 MeV) Alessandra Valloni Alex Bogacz 24 m 5.5 m ‘Lean’(400 MeV) Alex Bogacz JLAB, Aug. 14, 2017

Overview PERLE@Orsay (400 MeV) - Layout Compact footprint (24 m × 5.5 m × 0.8 m) Multi-pass linac Optics in ER mode Choice of symmetric ‘drift linac’ Optics: 3-pass ‘up’ + 3-pass ‘down’ Arc Optics Architecture Isochronous Arcs with Flexible Momentum Compaction (FMC) Optics Configured with two styles of 1.2 Tesla ‘curved bends’ Switchyard Two-step, Vertical Spreaders/Recombiners with matching sections: Linacs-Arcs ‘First cut’ lattice design for PERLE@Orsay Magnet inventory (Dipoles and Quads ) Outlook – Future R&D Alex Bogacz JLAB, Aug. 14, 2017

PERLE@Orsay - Layout 400 MeV 1 : 3 : 5 2 : 4 : 6 DE = 65.5 MeV 5.5 m injector 5 MeV DE = 65.5 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Alex Bogacz JLAB, Aug. 14, 2017

Three passes ‘up’ + Three passes ‘down’ PERLE@Orsay - Layout 400 MeV 1 : 3 : 5 24 m 0.8 m 5.5 m DE = 65.5 MeV injector 5 MeV DE = 65.5 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Three passes ‘up’ + Three passes ‘down’ Alex Bogacz JLAB, Aug. 14, 2017

PERLE@Orsay - Site Alex Bogacz JLAB, Aug. 14, 2017

PERLE@Orsay - Baseline Parameters 400 5 (300 pC) (20-th sub harmonics) Alex Bogacz JLAB, Aug. 14, 2017

PERLE@Orsay - Layout Top view Side view 2 : 4 : 6 1 : 3 : 5 5.5 m 24 m 4 m 10 m 2 : 4 : 6 1 : 3 : 5 Side view 0.4 m + 0.4 m Alex Bogacz JLAB, Aug. 14, 2017

Cost-effective Magnet Solution Alex Bogacz JLAB, Aug. 14, 2017

PERLE Magnet Design (dipoles and quads)

Cryo-module - Layout and Cavity Specs SNS 805 MHz Cryo-module 8.491 m 801.58 MHz RF, 5-cell cavity: l = 37.40 cm Lc = 5l/2 = 93.50 cm Grad = 17.5 MeV/m (16.4 MeV per cavity) DE= 65.5 MeV per Cryo-module 93.5 cm Alex Bogacz JLAB, Aug. 14, 2017

Linac - Layout Linac length: 26 × lRF Re-injection chicane 8.491 m 9.72 10 BETA_X&Y[m] BETA_X BETA_Y Cryo-module (8.491 m) Re-injection chicane Linac length: 26 × lRF Alex Bogacz JLAB, Aug. 14, 2017

Multi-pass ER Optics Acceleration Deceleration E6 E5 E4 E3 E2 E1 Einj 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E6 E5 E4 E3 E2 E1 Einj Acceleration 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Einj E1 E2 E3 E4 E5 E6 Deceleration Alex Bogacz JLAB, Aug. 14, 2017

Arc 6 Optics – FMC Lattice 7.70429 10 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 399 MeV 4×450 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[T/m] = - 23.6 Q2 L[cm] =15 G[T/m] = 28.2 Q3 L[cm] =10 G[T/m] = - 22.4 Q4 L[cm] =10 G[T/m] = 8.6 Dipoles: (91.2 cm long) B = 1.2 Tesla Alex Bogacz JLAB, Aug. 14, 2017

Arc 3 Optics – FMC Lattice 7.52246 10 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 202 MeV 4×450 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[T/m] = - 13.2 Q2 L[cm] =15 G[T/m] = 13.1 Q3 L[cm] =10 G[T/m] = - 9.3 Q4 L[cm] =10 G[T/m] = 3.1 Dipoles: (45.6 cm long) B = 1.2 Tesla Alex Bogacz JLAB, Aug. 14, 2017

Switchyard - Vertical Separation of Arcs (1, 3, 5) 71 MeV 202 MeV 333 MeV 40 cm Energies1 : 3 : 5 35 cm 20 cm T. Michalski Dipoles: (20 and 40 cm long) B = 0.8 Tesla Alex Bogacz JLAB, Aug. 14, 2017

Switchyard - Vertical Separation of Arcs (2, 4, 6) 40 cm Energies1 : 2 : 3 25 cm 137 MeV 268 MeV 399 MeV T. Michalski Dipoles: (30 cm long) B = 1.2 Tesla Alex Bogacz JLAB, Aug. 14, 2017

Switchyard - Layout Energies1 : 3 : 5 T. Michalski Energies1 : 2 : 3 Alex Bogacz JLAB, Aug. 14, 2017

Vertical Spreaders - Optics Spr. 1 (71 MeV) Spr. 5 (333 MeV) 4.27981 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 4.023 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y vertical step I vertical step II vertical chicane Alex Bogacz JLAB, Aug. 14, 2017

Arc 1 Optics (71 MeV) Isochronous Arc 2-step vert. Recombiner 15.71 20 2 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 42 × lRF 2-step vert. Spreader 2-step vert. Recombiner 1800 Arc Spr. dipoles: 4 450 bends L = 20 cm B = 9.5 kGauss Arc dipoles : 4450 bends L = 45.6 cm B = 4.5 kGauss Rec. dipoles: 4 450 bends L = 20 cm B = 9.5 kGauss quads: L = 10 cm G  1 kGauss/cm Alex Bogacz JLAB, Aug. 14, 2017

Pass up + Pass down Pass-1 ‘up’ Pass-1 ‘down’ 5 MeV 71 MeV 137 MeV 50.8316 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 5 MeV 71 MeV 137 MeV Pass-1 ‘down’ 137 MeV 50.8316 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 71 MeV 5 MeV Alex Bogacz JLAB, Aug. 14, 2017

Magnet Inventory

Outlook – R&D Program Liner lattice optimization Initial magnet specs Momentum acceptance and longitudinal match End-to-End simulation with synchrotron radiation, CSR micro- bunching (ELEGANT) Correction of nonlinear aberrations (geometric & chromatic) with multipole magnets (sext. octu.?) RF cavity design, HOM content BBU studies (TDBBU) Injection line/chicane design Space-charge studies at injection Diagnostics & Instrumentation Multi-particle tracking studies of halo formation Final magnet specs Engineering design Alex Bogacz JLAB, Aug. 14, 2017