Projectile Motion AP Physics B.

Slides:



Advertisements
Similar presentations
Projectile Motion AP Physics C.
Advertisements

Projectile Motion Level 1 Physics.
Projectile Motion Review.
Physics. Good News/Bad News: These are the same formulas we used for linear motion. Do you know them? If the answer is “NO”, then get familiar with them.
College Physics, 7th Edition
PDT 180 ENGINEERING SCIENCE Vectors And Scalars (Continue)
Projectiles Horizontal Projection Horizontally: Vertically: Vertical acceleration g  9.8 To investigate the motion of a projectile, its horizontal and.
Kinematics. The 3 Kinematic equations There are 3 major kinematic equations than can be used to describe the motion in DETAIL. All are used when the acceleration.
B2.2.  Projectiles follow curved (parabolic) paths know as trajectories  These paths are the result of two, independent motions  Horizontally, the.
3.3 & 3.4 Projectile Motion. Biblical Reference Then the archers shot arrows at your servants from the wall, and some of the king’s men died. 2 Samuel.
CHAPTER 6 MOTION IN 2 DIMENSIONS.
Projectile Motion.
Projectile Motion Honors Physics. What is projectile? Projectile -Any object which projected by some means and continues to move due to its own inertia.
Principles of Technology Physics
Projectile Motion Two kinds of motion in one Constant motion Accelerated motion.
Projectile Motion The motion of a falling object with air resistance and gravity acting on it.
Projectile Motion. Horizontally Launched Projectiles Projectiles which have NO upward trajectory and NO initial VERTICAL velocity. Y-Direction Free Fall.
Ch 3 part 2: Projectile Motion and Vectors in 2 dimensions.
A football is kicked into the air at an angle of 45 degrees with the horizontal. At the very top of the ball's path, its velocity is _______. a. entirely.
Brain Teaser During the Little League baseball season, every team plays every other team in the league ten times. If there are ten teams in the league,
Scrambled eggs pipe down or downpipe see eye to eye up to no good.
Projectile Motion AP Physics B.
Motion Kinematics.
Projectile Motion Section 3.3.
Motion in Two Dimensions EQ: What is a projectile?
Projectile Motion AP Physics B.
Projectile Motion AP Physics.
Projectile Motion Introduction Horizontal launch.
Projectile Review.
Vector Resolution and Projectile Motion
Projectile Motion AP Physics C.
PROJECTILE MOTION.
Motion in 2D (Projectiles!!) Test Friday October 7th
Projectile Motion GSE 420. What is projectile? Projectile -Any object which projected by some means and continues to move due to its own inertia (mass).
Vertical Projectile Motion
Projectile Motion.
Unit 3: Projectile & 2D Motion
Projectile Motion UCONN Physics.
Projectile Motion AP Physics C.
Agenda (10/15) Pick-up guided notes (on front table)
Projectile Motion.
Projectile Motion AP Physics C.
Projectile Motion AP Physics B.
Projectile Motion Discussion Questions
Two-dimensional Motion and Vectors Projectile Motion
Projectile Motion AP Physics B.
Motion in Two Dimensions EQ: What is a projectile?
Projectile Motion AP Physics C.
Projectile Motion AP Physics C.
Projectile Motion Time to Review.
Projectile Motion Honors Physics.
Projectile Motion AP Physics B.
Projectile Motion AP Physics B.
Projectile Motion.
Projectile Motion AP Physics C.
Projectile Motion AP Physics 1.
Projectile Motion AP Physics.
Projectile Motion AP Physics B.
Projectile Motion AP Physics C.
Projectile Motion Flow Chart
Projectile Motion Honors Physics.
Projectile Motion AP Physics C.
Physics 1 – Oct 9, 2018 P3 Challenge –
Projectile Motion AP Physics 1.
Projectile Motion.
Projectile Motion Physics 101.
PROJECTILE MOTION.
Physics 1 – Oct 5, 2017 P3 Challenge –
DO NOW A steel beam is rotated in a horizontal plane to provide the centripetal acceleration for training pilots. If the pilot sits 2.0 m from the center.
Presentation transcript:

Projectile Motion AP Physics B

What is projectile? Projectile -Any object which projected by some means and continues to move due to its own inertia (mass).

Projectiles move in TWO dimensions Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector. Horizontal and Vertical

Horizontal “Velocity” Component NEVER changes, covers equal displacements in equal time periods. This means the initial horizontal velocity equals the final horizontal velocity In other words, the horizontal velocity is CONSTANT. BUT WHY? Gravity DOES NOT work horizontally to increase or decrease the velocity.

Vertical “Velocity” Component Changes (due to gravity), does NOT cover equal displacements in equal time periods. Both the MAGNITUDE and DIRECTION change. As the projectile moves up the MAGNITUDE DECREASES and its direction is UPWARD. As it moves down the MAGNITUDE INCREASES and the direction is DOWNWARD.

Combining the Components Together, these components produce what is called a trajectory or path. This path is parabolic in nature. Component Magnitude Direction Horizontal Constant Vertical Changes

Horizontally Launched Projectiles Projectiles which have NO upward trajectory and NO initial VERTICAL velocity.

Horizontally Launched Projectiles To analyze a projectile in 2 dimensions we need 2 equations. One for the “x” direction and one for the “y” direction. And for this we use kinematic #2. Remember, the velocity is CONSTANT horizontally, so that means the acceleration is ZERO! Remember that since the projectile is launched horizontally, the INITIAL VERTICAL VELOCITY is equal to ZERO.

Horizontally Launched Projectiles Example: A plane traveling with a horizontal velocity of 100 m/s is 500 m above the ground. At some point the pilot decides to drop some supplies to designated target below. (a) How long is the drop in the air? (b) How far away from point where it was launched will it land? What do I know? What I want to know? vox=100 m/s t = ? y = 500 m x = ? voy= 0 m/s g = -9.8 m/s/s 1010 m 10.1 seconds

Vertically Launched Projectiles NO Vertical Velocity at the top of the trajectory. Vertical Velocity decreases on the way upward Vertical Velocity increases on the way down, Horizontal Velocity is constant Component Magnitude Direction Horizontal Constant Vertical Decreases up, 0 @ top, Increases down Changes

Vertically Launched Projectiles Since the projectile was launched at a angle, the velocity MUST be broken into components!!! vo voy q vox

Vertically Launched Projectiles There are several things you must consider when doing these types of projectiles besides using components. If it begins and ends at ground level, the “y” displacement is ZERO: y = 0

Vertically Launched Projectiles You will still use kinematic #2, but YOU MUST use COMPONENTS in the equation. vo voy q vox

Example A place kicker kicks a football with a velocity of 20.0 m/s and at an angle of 53 degrees. (a) How long is the ball in the air? (b) How far away does it land? (c) How high does it travel? vo=20.0 m/s q = 53

Example What I know What I want to know vox=12.04 m/s t = ? voy=15.97 m/s x = ? y = 0 ymax=? g = - 9.8 m/s/s A place kicker kicks a football with a velocity of 20.0 m/s and at an angle of 53 degrees. (a) How long is the ball in the air? 3.26 s

Example A place kicker kicks a football with a velocity of 20.0 m/s and at an angle of 53 degrees. (b) How far away does it land? What I know What I want to know vox=12.04 m/s t = 3.26 s voy=15.97 m/s x = ? y = 0 ymax=? g = - 9.8 m/s/s 39.24 m

Example What I know What I want to know t = 3.26 s x = 39.24 m y = 0 vox=12.04 m/s t = 3.26 s voy=15.97 m/s x = 39.24 m y = 0 ymax=? g = - 9.8 m/s/s A place kicker kicks a football with a velocity of 20.0 m/s and at an angle of 53 degrees. (c) How high does it travel? CUT YOUR TIME IN HALF! 13.01 m