The Structural Biology of Toll-like Receptors

Slides:



Advertisements
Similar presentations
TLR X-ray structures Harma Brondijk Bio-informatics course 2009.
Advertisements

Volume 15, Issue 11, Pages (November 2007)
Volume 18, Issue 2, Pages (February 2010)
Volume 130, Issue 5, Pages (September 2007)
Pathogen Recognition: TLRs Throw Us a Curve
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 9, Issue 2, Pages (February 2002)
Deubiquitination of Lys63-Linkage by a CYLD UBP
Natalie Zeytuni, Raz Zarivach  Structure 
Molecular Model of the Human 26S Proteasome
Volume 25, Issue 11, Pages e2 (November 2017)
Volume 15, Issue 11, Pages (November 2007)
Volume 14, Issue 1, Pages (January 2006)
Volume 14, Issue 12, Pages (December 2006)
Chen-Chou Wu, William J. Rice, David L. Stokes  Structure 
Structural Basis for the Specific Recognition of Methylated Histone H3 Lysine 4 by the WD-40 Protein WDR5  Zhifu Han, Lan Guo, Huayi Wang, Yue Shen, Xing.
Volume 23, Issue 6, Pages (September 2006)
MAP Kinase-Interacting Kinases—Emerging Targets against Cancer
Volume 3, Issue 12, Pages (December 1995)
The Evolution of Adaptive Immune Systems
Tom Huxford, De-Bin Huang, Shiva Malek, Gourisankar Ghosh  Cell 
Functional Insights from the Crystal Structure of the N-Terminal Domain of the Prototypical Toll Receptor  Monique Gangloff, Christopher J. Arnot, Miranda.
Volume 18, Issue 2, Pages (February 2010)
Volume 130, Issue 6, Pages (September 2007)
Volume 24, Issue 1, Pages (October 2006)
Volume 19, Issue 5, Pages (May 2011)
Nadine Keller, Jiří Mareš, Oliver Zerbe, Markus G. Grütter  Structure 
Elif Eren, Megan Murphy, Jon Goguen, Bert van den Berg  Structure 
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Rules for Nuclear Localization Sequence Recognition by Karyopherinβ2
Volume 23, Issue 4, Pages (April 2015)
Structure of the UBA Domain of Dsk2p in Complex with Ubiquitin
Structural Insights into the Inhibition of Wnt Signaling by Cancer Antigen 5T4/Wnt- Activated Inhibitory Factor 1  Yuguang Zhao, Tomas Malinauskas, Karl.
Volume 15, Issue 3, Pages (March 2007)
Volume 31, Issue 6, Pages (December 2009)
Danny N.P Doan, Terje Dokland  Structure 
Structural Basis for Protein Recognition by B30.2/SPRY Domains
The Crystal Structure of the Costimulatory OX40-OX40L Complex
Volume 130, Issue 5, Pages (September 2007)
Naomi Courtemanche, Doug Barrick  Structure 
Volume 17, Issue 6, Pages (June 2009)
Volume 14, Issue 5, Pages (May 2006)
Structural Basis of EZH2 Recognition by EED
Volume 25, Issue 11, Pages e4 (November 2017)
Volume 18, Issue 3, Pages (March 2010)
Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self- Assembled Tetramer  Yongheng Chen, Raja Dey, Lin Chen  Structure  Volume.
A Different Look for AB5 Toxins
The Unmasking of Telomerase
Volume 15, Issue 2, Pages (February 2007)
Crystal Structures of the BAR-PH and PTB Domains of Human APPL1
Meigang Gu, Kanagalaghatta R. Rajashankar, Christopher D. Lima 
Tianjun Zhou, Liguang Sun, John Humphreys, Elizabeth J. Goldsmith 
Volume 19, Issue 5, Pages (May 2011)
Solution Structure of a TBP–TAFII230 Complex
Structures of the Toll-like Receptor Family and Its Ligand Complexes
Volume 130, Issue 6, Pages (September 2007)
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Volume 14, Issue 6, Pages (June 2006)
Volume 24, Issue 7, Pages (July 2016)
Egg's ZP3 Structure Speaks Volumes
Volume 22, Issue 6, Pages (June 2006)
Structure of the EntB Multidomain Nonribosomal Peptide Synthetase and Functional Analysis of Its Interaction with the EntE Adenylation Domain  Eric J.
Volume 13, Issue 5, Pages (May 2005)
Structure of the InlB Leucine-Rich Repeats, a Domain that Triggers Host Cell Invasion by the Bacterial Pathogen L. monocytogenes  Michael Marino, Laurence.
Volume 13, Issue 4, Pages (April 2005)
Structures of the Toll-like Receptor Family and Its Ligand Complexes
Different dimerisation mode for TLR4 upon endosomal acidification?
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Yogesh K. Gupta, Deepak T. Nair, Robin P. Wharton, Aneel K. Aggarwal 
Volume 25, Issue 1, Pages (January 2017)
Presentation transcript:

The Structural Biology of Toll-like Receptors Istvan Botos, David M. Segal, David R. Davies  Structure  Volume 19, Issue 4, Pages 447-459 (April 2011) DOI: 10.1016/j.str.2011.02.004 Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 1 The Structure of Leucine-Rich Repeats (A) LRR consensus sequences for TLR3 and ribonuclease inhibitor. Residues forming the β strand are highlighted in orange. (B) A LRR loop from hTLR3 and a LRR loop from RI, with the conserved residues forming a hydrophobic core. The boxed regions form the surfaces involved in ligand binding. (C) Ribbon diagram of TLR3 (Bell et al., 2005) (2A0Z) and ribonuclease inhibitor (Kobe and Deisenhofer, 1995) (1DFJ). (D) Ribonuclease inhibitor complexed with ribonuclease A (Kobe and Deisenhofer, 1995) (1DFJ). The LRR protein is shown in blue and the ligand in orange. (E) Lamprey VLR complexed with H-trisaccharide (Han et al., 2008) (3E6J). (F) Glycoprotein Ib α complexed with the von Willebrand factor A1 domain (Huizinga et al., 2002) (1M10). Figures generated with program Pymol (DeLano, 2002). Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 2 The Structure of a TLR-ECD (hTLR3) Top and side views of the TLR3-ECD, with the N-linked glycosyl moieties (Bell et al., 2005) (2A0Z). The LRRs are capped by the LRR-NT and LRR-CT motifs and the molecule is flat with one glycan-free side (ascending side) that is involved in receptor dimerization. Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 3 Structure of the TLR1/TLR2/Pam3CSK4 Complex (A) The TLR2-ECD showing the position of the three subdomains: N-terminal, central, and C-terminal. (B) hTLR1 and Pam3CSK4 ligand interactions mapped on the molecular surface. (C) hTLR2 and Pam3CSK4 interactions mapped on the surface. (D) Ribbon diagram of TLR1/TLR2 binding Pam3CSK4 (magenta) (Jin et al., 2007) (2Z7X). Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 4 Ligand Binding by TLR 1, 2, and 6 (A) Cross-section through the molecular surface of the TLR1/TLR2/Pam3CSK4 complex (2Z7X). (B) Ribbon diagram of TLR2/TLR6 binding Pam2CSK4 (magenta) (Kang et al., 2009) (3A79). (C) Cross-section through the molecular surface of the TLR2/TLR6/Pam2CSK4 complex (3A79). (D) Cross-section through the molecular surface of the TLR2/pnLTA complex (Kang et al., 2009) (3A7B). (E) Cross-section through the molecular surface of the TLR2/PE-DTPA complex (Kang et al., 2009) (3A7C). Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 5 Structure of the TLR3/dsRNA Complex (A) Molecular surface of TLR3 dimer (green) with bound dsRNA (Liu et al., 2008) (3CIY). The interaction of the C-terminal capping motifs stabilizes the TLR3 dimer. (B) Top view. Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 6 Structure of the TLR4/MD-2/LPS Complex (A) Ribbon diagram of TLR4 (green), MD-2 (blue) binding LPS (magenta) (Park et al., 2009) (3FXI). (B) Cross-section through the molecular surface of the MD-2/LPS complex. (C) TLR4 and LPS interactions mapped on their molecular surfaces. (D) Cross-section through the molecular surface of the MD-2/lipid IVa complex (Ohto et al., 2007) (2E59). (E) Cross-section through the molecular surface of the MD-2/Eritoran complex (Kim et al., 2007) (2Z65). Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 7 TLR3 Signaling Complex and Signaling Pathways (A) Structural model of the full-length TLR3/dsRNA signaling complex. The model is based on the mTLR3/dsRNA structure (3CIY) and a TLR3 TIR domain homology model based on the TLR10 TIR structure (2J67). The transmembrane portions have been modeled as α helices. (B) TLR signaling pathways. TLR3 signals exclusively through TRIF, whereas TLR4 can use both the TRIF and the MyD88 pathways. All other TLRs use the MyD88 pathway. Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 8 Structure of the TIR Domain Dimer from TLR10 (A) Ribbon diagram of the dimeric TIR10, with the two interacting BB-loops highlighted in gold and red (Nyman et al., 2008) (2J67). (B) Molecular surface of dimeric TIR10. Structure 2011 19, 447-459DOI: (10.1016/j.str.2011.02.004) Copyright © 2011 Elsevier Ltd Terms and Conditions