EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Advertisements

EE105 Fall 2011Lecture 6, Slide 1Prof. Salahuddin, UC Berkeley Lecture 6 OUTLINE PN Junction Diodes – Reverse Breakdown – Large and Small signal models.
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
L04,... June 11,...1 Electronics I EE 2303/602 - Summer ‘01 Lectures 04,... Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 4 Bipolar Junction Transistors (BJTs)
Chapter 6. pn Junction Diode
BJT Static Characteristics
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
5.4 Reverse-Bias Breakdown
Professor Ronald L. Carter
BJT Static Characteristics
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2010
Professor Ronald L. Carter
Lecture 5 OUTLINE PN Junction Diodes I/V Capacitance Reverse Breakdown
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Breakdown mechanisms
Lecture 27 OUTLINE The BJT (cont’d) Breakdown mechanisms
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture #25 OUTLINE BJT: Deviations from the Ideal
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 12 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
Professor Ronald L. Carter
Physics of Semiconductor Devices
Lecture #18 OUTLINE pn junctions (cont’d)
Deviations from the Ideal I-V Behavior
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
EE 5340 Semiconductor Device Theory Lecture 13 - Fall 2009
Lecture 25 OUTLINE The BJT (cont’d) Ideal transistor analysis
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
BJT Static Characteristics
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
ECE 340 Lecture 23 Current Flow in P-N diode
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2003
BIPOLAR JUNCTION TRANSISTOR (BJT)
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Professor Ronald L. Carter
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc L 17 Oct 21

Summary of Va > 0 current density eqns. Ideal diode, Jsexpd(Va/(hVt)) ideality factor, h Recombination, Js,recexp(Va/(2hVt)) appears in parallel with ideal term High-level injection, (Js*JKF)1/2exp(Va/(2hVt)) SPICE model by modulating ideal Js term Va = Vext - J*A*Rs = Vext - Idiode*Rs L 17 Oct 21

Plot of typical Va > 0 current density equations ln(J) data Effect of Rs Vext VKF L 17 Oct 21

For Va < 0 carrier recombination in DR The S-R-H rate (tno = tpo = to) is L 17 Oct 21

Reverse bias (Va<0) => carrier gen in DR Consequently U = -ni/2t0 t0 = mean min. carr. g/r lifetime L 17 Oct 21

Reverse bias (Va< 0), carr gen in DR (cont.) L 17 Oct 21

Ecrit for reverse breakdown (M&K**) Taken from p. 198, M&K** L 17 Oct 21

Reverse bias junction breakdown Avalanche breakdown Electric field accelerates electrons to sufficient energy to initiate multiplication of impact ionization of valence bonding electrons field dependence shown on next slide Heavily doped narrow junction will allow tunneling - see Neamen*, p. 274 Zener breakdown L 17 Oct 21

Reverse bias junction breakdown Assume -Va = VR >> Vbi, so Vbi-Va-->VR Since Emax~ 2VR/W = (2qN-VR/(e))1/2, and VR = BV when Emax = Ecrit (N- is doping of lightly doped side ~ Neff) BV = e (Ecrit )2/(2qN-) Remember, this is a 1-dim calculation L 17 Oct 21

Junction curvature effect on breakdown The field due to a sphere, R, with charge, Q is Er = Q/(4per2) for (r > R) V(R) = Q/(4peR), (V at the surface) So, for constant potential, V, the field, Er(R) = V/R (E field at surface increases for smaller spheres) Note: corners of a jctn of depth xj are like 1/8 spheres of radius ~ xj L 17 Oct 21

BV for reverse breakdown (M&K**) Taken from Figure 4.13, p. 198, M&K** Breakdown voltage of a one-sided, plan, silicon step junction showing the effect of junction curvature.4,5 L 17 Oct 21

Diode equivalent circuit (small sig) ID h is the practical “ideality factor” IQ VD VQ L 17 Oct 21

Small-signal eq circuit Cdiff and Cdepl are both charged by Va = VQ Va Cdiff rdiff Cdepl L 17 Oct 21

Diode Switching Consider the charging and discharging of a Pn diode (Na > Nd) Wn << Lp For t < 0, apply the Thevenin pair VF and RF, so that in steady state IF = (VF - Va)/RF, VF >> Va , so current source For t > 0, apply VR and RR IR = (VR + Va)/RR, VR >> Va, so current source L 17 Oct 21

Diode switching (cont.) VF,VR >> Va F: t < 0 Sw RF R: t > 0 VF + RR D + VR L 17 Oct 21

Diode charge for t < 0 pn pno x xn xnc L 17 Oct 21

Diode charge for t >>> 0 (long times) pn pno x xn xnc L 17 Oct 21

Equation summary L 17 Oct 21

Snapshot for t barely > 0 pn Total charge removed, Qdis=IRt pno x xn xnc L 17 Oct 21

I(t) for diode switching ID IF ts ts+trr t - 0.1 IR -IR L 17 Oct 21

L 17 Oct 21

L 17 Oct 21

Ideal diode equation for EgN = EgN Js = Js,p + Js,n = hole curr + ele curr Js,p = qni2Dp coth(Wn/Lp)/(NdLp), [cath.] = qni2Dp/(NdWn), Wn << Lp, “short” = qni2Dp/(NdLp), Wn >> Lp, “long” Js,n = qni2Dn coth(Wp/Ln)/(NaLn), [anode] = qni2Dn/(NaWp), Wp << Ln, “short” = qni2Dn/(NaLn), Wp >> Ln, “long” Js,n<<Js,p when Na>>Nd , Wn & Wp cnr wdth L 17 Oct 21

Ideal diode equation for heterojunction Js = Js,p + Js,n = hole curr + ele curr Js,p = qniN2Dp/[NdLptanh(WN/Lp)], [cath.] = qniN2Dp/[NdWN], WN << Lp, “short” = qniN2Dp/(NdLp), WN >> Lp, “long” Js,n = qniP2Dn/[NaLntanh(WP/Ln)], [anode] = qniP2Dn/(NaWp), Wp << Ln, “short” = qniP2Dn/(NaLn), Wp >> Ln, “long” Js,p/Js,n ~ niN2/niP2 ~ exp[[EgP-EgN]/kT] L 17 Oct 21

Bipolar junction transistor (BJT) The BJT is a “Si sandwich” Pnp (P=p+,p=p-) or Npn (N=n+, n=n-) BJT action: npn Forward Active when VBE > 0 and VBC < 0 P n p E B C VEB VCB Charge neutral Region Depletion Region L 17 Oct 21

npn BJT topology x x’ p-Base n-Collector N-Emitter z WB WB+WC -WE x”c Charge Neutral Region Depletion Region x x’ p-Base n-Collector N-Emitter z WB WB+WC -WE x”c x” xB x’E IE IC IB L 17 Oct 21

BJT boundary and injection cond (npn) L 17 Oct 21

BJT boundary and injection cond (npn) L 17 Oct 21

IC npn BJT (*Fig 9.2a) L 17 Oct 21

References * Semiconductor Physics and Devices, 2nd ed., by Neamen, Irwin, Boston, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Muller and Kamins, John Wiley, New York, 1986. L 17 Oct 21