Challenges, Progress and Plans of SRF CH-Structures

Slides:



Advertisements
Similar presentations
Institut für Angewandte Physik LINAC AG H. Podlech 1 MYRRHA Injector Design and Related R&D 2 nd Open Collaboration Meeting on Superconducting Linacs for.
Advertisements

Institut für Angewandte Physik LINAC AG Max school, October 2nd Florian Dziuba Status of the sc cw LINAC Demonstrator Florian Dziuba Institut für.
RFQ development for high power beams
Tom Powers Practical Aspects of SRF Cavity Testing and Operations SRF Workshop 2011 Tutorial Session.
Overview of SMTF RF Systems Brian Chase. Overview Scope of RF Systems RF & LLRF Collaboration LLRF Specifications for SMTF Progress So Far Status of progress.
Juliette PLOUIN – CEA/SaclayCARE’08, 3 December /21 Superconducting Cavity activities within HIPPI CARE ‘08 CERN, 2-5 December 2008 Juliette PLOUIN.
ESS End-to-End Optics and Layout Integration Håkan Danared European Spallation Source Catania, 6 July 2011.
325 MHz RF Cave and SC Spoke Cavity Tests Robyn Madrak – Accelerator Physics Center (APC) for the HINS/Project X Group.
SRF Results and Requirements Internal MLC Review Matthias Liepe1.
Preliminary design of SPPC RF system Jianping DAI 2015/09/11 The CEPC-SppC Study Group Meeting, Sept. 11~12, IHEP.
Activities of Superconducting RF Accelerators at Nanjing University Sun An Proton Linear Accelerator Institute Institute of Energy Sciences, Nanjing University.
July LEReC Review July 2014 Low Energy RHIC electron Cooling Sergey Belomestnykh SRF and RF systems.
J. Alessi RF Structures EBIS Project Technical Review 1/27/05 RF Structures J. Alessi Some general thoughts on what our approach will be.
Marc Ross Nick Walker Akira Yamamoto ‘Overhead and Margin’ – an attempt to set standard terminology 10 Sept 2010 Overhead and Margin 1.
W. 5th SPL collaboration Meeting CERN, November 25, 20101/18 reported by Wolfgang Hofle CERN BE/RF Update on RF Layout and LLRF activities for.
Development of the Room Temperature CH-DTL in the frame of the HIPPI-CARE Project Gianluigi Clemente,
SRF Requirements and Challenges for ERL-Based Light Sources Ali Nassiri Advanced Photon Source Argonne National Laboratory 2 nd Argonne – Fermilab Collaboration.
1 Spoke cavities for ESS and MYRRHA G. Olry, P. Duchesne (IPN Orsay) SLHiPP-2, 3-4 May 2012, Catania.
I. Ben-Zvi Update Ilan Ben-Zvi for the Stony Brook, BNL and AES SPL teams Presented by Rama Calaga.
Test plan for SPL short cryomodule O. Brunner, W. Weingarten WW 1SPL cryo-module meeting 19 October 2010.
Group 6 / A RF Test and Properties of a Superconducting Cavity Mattia Checchin, Fabien Eozénou, Teresa Martinez de Alvaro, Szabina Mikulás, Jens Steckert.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.
CHARGES TO THE ESAC The External Scientific Advisory Committee for the HIPPI JRA inside CARE has been nominated to analyse the work done and planned in.
Warm and Cold Ion Linac: Comparison and Optimization March 30, 2015.
The Superconducting cavities of the European Spallation Source Superconducting Technologies Workshop CERN – 4 & 5 December 2012 Sébastien Bousson (CNRS/IN2P3/IPN.
Institut für Angewandte Physik LINAC AG H. Podlech 1 Injector Development for MYRRHA 3 nd Open Collaboration Meeting on Superconducting Linacs for High.
ESS AD RETREAT 5 th December 2011, Lund “A walk down the Linac” SPOKES Sébastien Bousson IPN Orsay.
Project X Collaboration Meeting, April 12-14, 2011 Spallation Neutron Source facility at Oak Ridge National Laboratory HOM Couplers for Project X: Are.
Page 1 Jean Delayen Center for Accelerator Science Old Dominion University RF Dipole Cavity Design and Plans LARP Review Fermilab, 10 June 2013.
1 Project X Workshop November 21-22, 2008 Richard York Chris Compton Walter Hartung Xiaoyu Wu Michigan State University.
Matthias Liepe. Matthias Liepe – High loaded Q cavity operation at CU – TTC Topical Meeting on CW-SRF
Linac Design: Single-Spoke Cavities.
11/12/2013P. Bosland - AD-retreat - Lund Designs of the Spoke and Elliptical Cavity Cryomodules P. Bosland CEA/Saclay IRFU On behalf of the cryomodule.
H-ECCTD KICK-OFF DESCRIPTION AND CHALLENGES 16/03/2016 F. PEAUGER.
Thomas Jefferson National Accelerator Facility Page 1 FNAL September 11, 2009 Design Considerations for CW SRF Linacs Claus H. Rode 12 GeV Project Manager.
Shuichi NoguchiTTC Meeting at Milano, Injector Cryomodule for cERL at KEK Cavity 2 Prototypes were tested. Input Coupler 2 Couplers were tested.
ESS SC cavities development G. Devanz TTC meeting, march 1st 2011, Milano.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Jefferson.
Welcome to the RFQ Meeting
SC Activities at IAP Frankfurt
Status and plans for the 3.9 GHz section of XFEL
WP5 Elliptical cavities
Odu/slac rf-dipole prototype
Physics design on the main linac
TTC Topical Workshop - CW SRF, Cornell 12th – 14th June 2013
Progress in the Multi-Ion Injector Linac Design
LINAC AG • IAP • Goethe Universität Frankfurt
SPS – RFD Experience and Evolution to LHC
Physics design on Injector-1 RFQ
SC spoke cavity for China-ADS 3~10MeV injector
HWR Cavities for China ADS
Challenges and Perspectives of Accelerator Driven Systems (ADS)
A. Plastun¹, B. Mustapha, Z. Conway and P. Ostroumov
High Gradient Cavities: Cost and Operational Considerations
Part2: Cavities and Structures
Development of the SRF Cavity Design for the Cooler ERL
EffiCAS Efficient Facility for Ions at CAS
Review of the European XFEL Linac System
ADS Accelerator Program in China
CEPC Injector positron source
Pulsed Ion Linac for EIC
Part2: Cavities and Structures
DESIGN OF THE HWR CAVITIES FOR SARAF
SC ISOL Linac of KoRIA Tae-Sun Park (SKKU).
Physics Design on Injector I
Status of the JLEIC Injector Linac Design
Conceptual Cryomodule Design for the CW HElmholtz LInear ACcelerator at GSI F. Dziuba1,2,4 K. Aulenbacher1,2,4, W. Barth1,2, M. Basten3, C. Burandt1,2,
Multi-Ion Injector Linac Design – Progress Summary
RF system for MEIC Ion Linac: SRF and Warm Options
Presentation transcript:

Challenges, Progress and Plans of SRF CH-Structures Holger J. Podlech Institute for Applied Physics (IAP) University of Frankfurt TTC Meeting Jefferson Lab November 5th-8th 2012

CH-Structures Crossbar H-Mode-Structure H211-Mode Efficient DTL-structures for the low and medium energy range KONUS or EQUUS Layout

First CH-Prototype f=360 MHz b=0.1 Ueff=5.5 MV

Pick-up Forwarded Piezo signal Horizontal Test

Learning Lessons From the First Prototype Little space between stems for tuner and power coupler  change orientation New dynamic tuner without additional longitudinal space requirements Poor preparation possibilities (only on-axis)  new cleaning flanges Long end cells for field enhancement (additional drift)  sloped end stems

325 MHz CH-Cavity Static Tuners Bellow Tuner Power Coupler 0.1545 Frequency (MHz) 325.224 Cells 7 Length bl-def (mm) 505 Diameter (mm) 348 Ea (MV/m) 5 Ep/Ea 5.1 Bp/Ea [mT/(MV/m)] 13 G (W) 64 Ra/Q0 (W) 1248 RaRs (W2) 80000 Power Coupler Helium Vessel

325 MHz CH-Prototype

Optimization of the Geometry of Superconducting CH-Cavities Cost, Construction Time, Fabrication Inaccuracies Arrived in Frankfurt October 31st

325 MHz CH-Cavity: First Measurements

325 MHz Cavity: Static Tuners Design Position Deviation from Design frequency: 500 kHz < 0.2%

Strategy to Hit the Operation Frequency Fabrication inaccuracy (Δf = 0.5 MHz) Thermal shrinkage (Δf ≈ +400 kHz) Pressure sensitivity (Δf ≈ +200 kHz) Surface preparation (Δf = 6 kHz/mm) Microphonics (Δf = ? Hz) Lorentz Force Detuning (Δf = ? Hz) End cell offset 10 mm (Δf ≈ ±1 MHz) Static tuners (Δf ≈ +1.3 MHz, -2.2 MHz) Surface preparation (Δf = 6 kHz/mm) Slow bellow tuners (Δf ≈ ±250 kHz) Fast bellow tuner (Δf ≈ ± 1000 Hz)

The MYRRHA Project Multi Purpose HYbrid Research Reactor for High Tech Applications Struckturen durchgehen Warum normalleitend / supraleitend CH-Design Solenoid-Design Ein Kryomodul

The 17 MeV MYRRHA Injector sc CH-4 sc CH-3 sc CH-2 sc CH-1 Parameter Unit Value Frequency MHz 176.1 Cells --- 7-10 L tot mm 920-1130 Ueff MV 3.5-4.1 Ea MV/m 3.5-3.9 R/Q W 1600-2200 Struckturen durchgehen Warum normalleitend / supraleitend CH-Design Solenoid-Design Ein Kryomodul

Future GSI/FAIR Injector Complex Parameter Unit Mass/ Charge 6 Frequency MHz 216.816 Max. beam current mA 1 Injection energy AMeV 1.4 Output energy 3.5 – 7.5 Output energy spread AkeV ± 3 Length of acceleration m 12.7 Sc CH-cavities 9 Sc solenoids 7

cw SHE-Linac Demonstrator Parameter Unit CH-1 Beta 0.059 Frequency MHz 216.816 Gap number 15 Total length mm 687 Cavity diameter 409 Cell length 40.82 Aperture 20 Ua MV 3.369 Energy gain MeV 2.97 Accelerating gradient MV/ m 5.1 Ep/ Ea 6.4 Bp/ Ea mT/ (MV/m) 5.4 R/ Q Ω 3320 Static tuner 9 Dynamic bellow tuner 3 Helium vessel Coupler flange Pickup flange Inclined end stem Tuner flange Preparation flange

Cryo Module cw SHE-Linac Demonstrator

Setup for Beam Tests at GSI 217 MHz Demonstrator 108.4 MHz RFQ 108.4 MHz IH-Cavity

Thank you