2.6 Related Rates.

Slides:



Advertisements
Similar presentations
4.6 Related Rates Any equation involving two or more variables that are differentiable functions of time t can be used to find an equation that relates.
Advertisements

2.6 Related Rates.
1 Related Rates Section Related Rates (Preliminary Notes) If y depends on time t, then its derivative, dy/dt, is called a time rate of change.
Limit Definition of Derivatives Basic Rules Product,
Chapter 4 Additional Derivative Topics
Related Rates Chapter 3.7. Related Rates The Chain Rule can be used to find the rate of change of quantities that are related to each other The important.
Section 2.6 Related Rates.
4.6: Related Rates. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
When we first started to talk about derivatives, we said that becomes when the change in x and change in y become very small. dy can be considered a very.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
D1 - Related Rates IB Math HL, MCB4U - Santowski.
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
Related rates.
2.8 Related Rates.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
Aim: How do we find related rates when we have more than two variables? Do Now: Find the points on the curve x2 + y2 = 2x +2y where.
2.6 Related Rates Don’t get.
Linearization , Related Rates, and Optimization
Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 267 # 1-19 odd, 23, 25, 29.
AP Calculus AB Chapter 2, Section 6 Related Rates
R ELATED R ATES. The Hoover Dam Oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant.
Calculus warm-up Find. xf(x)g(x)f’(x)g’(x) For each expression below, use the table above to find the value of the derivative.
Warmup 1) 2). 4.6: Related Rates They are related (Xmas 2013)
APPLICATION OF DIFFERENTIATION AND INTEGRATION
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
RELATED RATES. P2P22.7 RELATED RATES  If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates.
2 Copyright © Cengage Learning. All rights reserved. Differentiation.
Warm-Up If x 2 + y 2 = 25, what is the value of d 2 y at the point (4,3)? dx 2 a) -25/27 c) 7/27 e) 25/27 b) -7/27 d) 3/4.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
Related Rates. I. Procedure A.) State what is given and what is to be found! Draw a diagram; introduce variables with quantities that can change and constants.
S ECTION 3.6 R ECAP Derivatives of Inverse Functions.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
Differentiation: Related Rates – Day 1
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
RELATED RATES DERIVATIVES WITH RESPECT TO TIME. How do you take the derivative with respect to time when “time” is not a variable in the equation? Consider.
Copyright © Cengage Learning. All rights reserved. Differentiation.
Sec 4.1 Related Rates Strategies in solving problems: 1.Read the problem carefully. 2.Draw a diagram or pictures. 3.Introduce notation. Assign symbols.
in terms of that of another quantity.
Problem of the Day If x 2 + y 2 = 25, what is the value of d 2 y at the point (4,3)? dx 2 a) -25/27 c) 7/27 e) 25/27 b) -7/27 d) 3/4.
Warm Up Day two Write the following statements mathematically John’s height is changing at the rate of 3 in./year The volume of a cone is decreasing.
Calculus - Santowski 3/6/2016Calculus - Santowski1.
Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
Related Rates 3.6.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
3 DERIVATIVES.
2.6: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
Related Rates. We have already seen how the Chain Rule can be used to differentiate a function implicitly. Another important use of the Chain Rule is.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
MATH 1910 Chapter 2 Section 6 Related Rates.
Section 2-6 Related Rates
DERIVATIVES WITH RESPECT TO TIME
Sect. 2.6 Related Rates.
Hold on to your homework
Table of Contents 19. Section 3.11 Related Rates.
2.6 Related Rates.
Copyright © Cengage Learning. All rights reserved.
AP Calculus BC September 12, 2016.
Section 2.6 Calculus AP/Dual, Revised ©2017
AP CALCULUS RELATED RATES
Copyright © Cengage Learning. All rights reserved.
§3.9 Related rates Main idea:
Related Rates Section 3.9.
Presentation transcript:

2.6 Related Rates

After this lesson, you should be able to: Find a related rate. To determine how variables change with respect to time. Use related rates to solve real-life problems.

Related Rates In real-life, we meet those kind of questions often: 1. How fast is the ladder slipping down the wall? 2. How fast is the shadow moving? 3. How quickly is the angle decreasing? 4. How fast is the height changing in the water tank? 5. How fast is the area/volume changing?

When water is drained out of a conical tank, the volume V, the radius r, and the height h of the water level are all functions of time t. We know that all the variables are related by the volume formula: The rate of change of V is related to the rates of change both r and h

Procedure: Sketch a picture and label  constants and all values that vary List all given rates and note if they are increasing (+) or decreasing (-). Write an equation relating the quantities with the unknown rate of change with the given rates of change. CR – Differentiate with respect to time & solve for the unknown rate Substitute the given values in and simplify Don’t forget to use units!!! Also note: If the quantity increases: + answer If the quantity decreases: - answer Change in distance? m/s Change in area? m2/s Change in volume? m3/s

Related Rates Example 1 Suppose x and y are both differentiable functions of t and are related by the equation y = x2 + 3. Find dy/dt, given that dx/dt = 2 when x = 1 Solution When x = 1 and dx/dt = 2, then

Related Rates Example 2 Suppose air is being pumped into a spherical balloon at the rate of 10 cubic centimeters per minute. How fast is the radius of the balloon increasing when the radius is 5 cm? Solution Let V be the volume of the balloon and r be its radius. We know that all the variables are related by the volume formula: or,

Related Rates Example 2 Suppose air is being pumped into a spherical balloon at the rate of 10 cubic centimeters per minute. How fast is the radius of the balloon increasing when the radius is 5 cm? Solution Since the volume is increasing at a rate of 10 cm3/min, the rate of change of the volume is When r = 5, the rate of change of the radius is

Related Rates Example 3 A pebble is dripped into a calm pond, causing in the form of concentric circles. The radius r of the outer ripple is increasing at a rate of 1 feet per second. When the radius is 4 feet, at what rate is the total area A of the disturbed water changing? Solution Note that the disturbed water area A and radius r are related by the formula:

Related Rates Example 3 A pebble is dripped into a calm pond, causing in the form of concentric circles. The radius r of the outer ripple is increasing at a rate of 1 feet per second. When the radius is 4 feet, at what rate is the total area A of the disturbed water changing? Solution Since the radius of outer ripple is increasing at a rate of 1 ft3/sec, the rate of change of the radius is Then,

Related Rates Example 4 A patrol car is parked 50 feet from a long warehouse. The revolving light on top of the car turns at a rate of 30 revolutions per minute. How fast is the light beam moving along the wall when the beam makes angles of (a)  = 30o (b)  = 60o and (c)  = 70o with the line perpendicular from the light to the wall?  50 x

Related Rates Solution The information that “30 revolution per minute” means  50 x The relationship among the variables is Therefore, or,

Related Rates Solution (a)  = 30o  50 x (b)  = 60o (c)  = 70o

Related Rates Read and understand the Example 6 on P 153

Related Rates Example 5 A winch at the tip of a 12-meter building pulls pipe of the same length to a vertical position. The winch pulls in a rope at a rate of – 0.2 meter/sec. Find the rate of vertical change and the rate of horizontal change at the end of the pipe when y = 6 s (x, y) 12 12 Solution The relationships among the three variables are: and When y = 6 =12/2, and

Related Rates and Solution and s (x, y) 12 Taking the derivative with respect of t to the above 2 equations, we have 12 (1) (2)

Related Rates and Solution Equation (1) – (2), we have s (x, y) or 12 m/s From Equation (1), we have m/s

Homework Section 2.6 page 154 #xxxx

Related Rates and Solution and s (x, y) 12 Taking the derivative with respect of t to the above 2 equations, we have 12

and Related Rates Solution s (x, y) 12 12