Volume 1, Issue 4, Pages (December 2017)

Slides:



Advertisements
Similar presentations
Understanding the Giant Seebeck Coefficient of MnO 2 Nanoparticles Costel Constantin James Madison University James Madison University, October 2012.
Advertisements

Computational Solid State Physics 計算物性学特論 第2回 2.Interaction between atoms and the lattice properties of crystals.
ISSUES TO ADDRESS... How are electrical conductance and resistance characterized ? 1 What are the physical phenomena that distinguish conductors, semiconductors,
Theoretical Study of Chalcopyrite CuInTe 2 as Thermoelectric(TE) materials 2014/12/3 Yoshida lab Shun Miyaue thermoelectric (TE) : 熱電 /12/0 3.
Computational Approaches Computational Approaches
Thermoelectricity of Semiconductors
Recent advances in intercalation compounds physics.
NANO 225 Intro to Nano/Microfabrication
STEF-NANO-ACC Stimulating, Encouraging and Facilitating the Participation of ACC Nanotechnology and Nanoscience Research Organisations To FP6 Topic:
1 Nanoscale Modeling and Computational Infrastructure ___________________________ Ananth Grama Professor of Computer Science, Associate Director, PRISM.
Prospective Thermoelectric Tellurides
“Semiconductor Physics”
Outline Review Material Properties Band gap Absorption Coefficient Mobility.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.

Volume 1, Issue 2, Pages (October 2017)
ECEE 302: Electronic Devices
Comprehensive Atomistic Modeling of Thermoelectric Semiconductor Nanowire Heterostructures Joshua Schrier, Department of Chemistry, Haverford College,
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 4, Pages (December 2017)
Volume 2, Issue 3, Pages (March 2017)
The Expanding Energy Prospects of Metal Organic Frameworks
Volume 2, Issue 2, Pages (February 2018)
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 3, Pages (November 2017)
A Reliability Look at Energy Development
Atomistic simulations of contact physics Alejandro Strachan Materials Engineering PRISM, Fall 2007.
Atomistic materials simulations at The DoE NNSA/PSAAP PRISM Center
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
Basic Semiconductor Physics
David Broido, Physics Dept. Boston College PRF# AC10
Volume 1, Issue 4, Pages (December 2017)
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Perovskite Solar Cells Go Lead Free
Photoelectric Solar Power Revisited
Bitcoin's Growing Energy Problem
Volume 1, Issue 4, Pages (December 2017)
Machine Learning for Perovskites' Reap-Rest-Recovery Cycle
The Case against Carbon Prices
Volume 2, Issue 1, Pages (January 2018)
Volume 1, Issue 4, Pages (December 2017)
First-Principles Computational Study of the Properties of Some Silicon-based Type II Clathrate Compounds Dong Xue and Charles W. Myles Introduction.
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics
High-Energy Li Metal Battery with Lithiated Host
Electrification and Decarbonization of the Chemical Industry
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Volume 2, Issue 3, Pages (March 2018)
Volume 2, Issue 1, Pages (January 2018)
K.Nagasawa1), H.Nakatsugawa1) and Y.Okamoto2)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
Zhuangchai Lai, Ye Chen, Chaoliang Tan, Xiao Zhang, Hua Zhang  Chem 
Volume 19, Issue 2, Pages (February 2011)
Volume 4, Issue 4, Pages (April 2018)
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
Volume 2, Issue 4, Pages (April 2018)
Volume 4, Issue 5, Pages (May 2018)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem 
Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7%  Sisi Xiang, Weiping Li, Ya Wei, Jiaming Liu, Huicong Liu,
Chaotic Dynamics Mediate Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations  Rune Rasmussen, Mogens H. Jensen, Mathias L.
Zhuangchai Lai, Ye Chen, Chaoliang Tan, Xiao Zhang, Hua Zhang  Chem 
Volume 1, Issue 2, Pages (October 2017)
Anomalous Dome-like Superconductivity in RE2(Cu1-xNix)5As3O2 (RE = La, Pr, Nd)  Xu Chen, Jiangang Guo, Chunsheng Gong, Erjian Cheng, Congcong Le, Ning.
Infrared Light-Driven CO2 Overall Splitting at Room Temperature
Yokohama National University T.Ozaki and H.Nakatsugawa
Room-Temperature Conversion of Methane Becomes True
Presentation transcript:

Volume 1, Issue 4, Pages 816-830 (December 2017) High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons  Siqi Lin, Wen Li, Shasha Li, Xinyue Zhang, Zhiwei Chen, Yidong Xu, Yue Chen, Yanzhong Pei  Joule  Volume 1, Issue 4, Pages 816-830 (December 2017) DOI: 10.1016/j.joule.2017.09.006 Copyright © 2017 Elsevier Inc. Terms and Conditions

Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Phase Characterization (A–D) Crystal structure of Ag9GaSe6 in the high temperature (>281 K) phase (A). Powder X-ray diffraction patterns (B), the lattice parameter (C), and room temperature Hall carrier concentration (D) for Ag9Ga(Se1−xTex)6, indicating formation of a solid solution. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 Microstructures of Ag9GaSe6 (A–D) SEM image (A) and the corresponding EDS composition mapping of Ag (B), Se (C), Ga (D) for Ag9GaSe6. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 Optical Absorption The normalized optical absorption versus photon energy at room temperature for Ag9Ga(Se1−xTex)6. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 Molecular Dynamics Simulations (A–C) Crystal structure of Ag9GaSe6 in the low-temperature phase projected onto the (100) plane (A) and the corresponding atomic trajectories at (B) 300 K and (C) 500 K, with Ag in blue, Ga in red, and Se in green. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 Electron Density Distribution (A and B) Electron density isosurface of 0.4 e/Å3 in Ag9GaSe6 (A) and the electron density distribution in an atomic plane crossing the Se-Ga-Se bonds (B). Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 6 Phonon Dispersion (A and B) Calculated phonon dispersions (A) and the projected phonon density of states (B) for Ag9GaSe6. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 7 Survey of ωm versus κL Room temperature lattice thermal conductivity versus the cutoff frequency of acoustic phonons for semiconductors. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 8 Thermal Properties Temperature-dependent total thermal conductivity and lattice thermal conductivity for Ag9Ga(Se1−xTex)6, compared with the lattice thermal conductivity of Ga2Se3 with intrinsic vacancies.52 Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 9 Band Structure DFT band structure of Ag9GaSe6 in P213 phase. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 10 Electronic Transport Properties (A–D) Temperature-dependent Hall mobility, μH (A), density-of-state effective mass, m* and deformation potential coefficient, Edef (B), Hall carrier concentration-dependent Seebeck coefficient (C), and Hall mobility (D) at 300, 500, and 800 K for Ag9GaSe6. The solid curves in (C) and (D) show the SPB model predictions. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 11 Thermoelectric Transport Properties (A–C) Temperature-dependent Seebeck coefficient (A), resistivity (B), and figure of merit, zT (C) for Ag9Ga(Se1−xTex)6. (D) The model-predicted zT versus carrier concentration at 300, 500, and 800 K for Ag9GaSe6. Joule 2017 1, 816-830DOI: (10.1016/j.joule.2017.09.006) Copyright © 2017 Elsevier Inc. Terms and Conditions