Overview of MEIC Ion Complex and Ion Collider Ring

Slides:



Advertisements
Similar presentations
Simulation Study For MEIC Electron Cooling He Zhang, Yuhong Zhang Thomas Jefferson National Accelerator Facility Abstract Electron cooling of the ion beams.
Advertisements

Ion Accelerator Complex for MEIC January 28, 2010.
Thomas Roser RHIC Open Planning Meeting December 3-4, 2003 RHIC II machine plans Electron cooling at RHIC Luminosity upgrade parameters.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Department of Energy Issues.
Merminga, EIC2007, Apr ELIC R&D and Realization Plan Lia Merminga for the ELIC Study Group Center for Advanced Studies of Accelerators Jefferson.
Toward a Test Facility for an ERL Circulator Ring Based e-Cooler MEIC Electron Cooler Test Facility Planning Retreat January 31, 2012.
MEIC Electron Cooling Simulation He Zhang 03/18/2014, EIC 14 Newport News, VA.
Page 1 Workshop 01/2011 The Accumulator/Pre-Booster Bela Erdelyi Department of Physics, Northern Illinois University, and Physics Division, Argonne National.
Ion Polarization Control in MEIC Rings Using Small Magnetic Fields Integrals. PSTP 13 V.S. Morozov et al., Ion Polarization Control in MEIC Rings Using.
MEIC Electron Cooler Design Concept. EC potential impact to colliders Reaching a high start luminosity Very short i-bunches achieved by longitudinal cooling.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
MEIC Staged Cooling Scheme and Simulation Studies He Zhang MEIC Collaboration Meeting, 10/06/2015.
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Thomas Jefferson National Accelerator Facility Newport News, Virginia, USA ELIC: A HIGH LUMINOSITY AND EFFICIENT SPIN MANIPULATION ELECTRON-LIGHT ION COLLIDER.
Synchronization Andrew Hutton Slava Derbenev Yuhong Zhang.
ERHIC design status V.Ptitsyn for the eRHIC design team.
Page 1 Review 09/2010 MEIC R&D Yuhong Zhang. Page 2 Review 09/2010 Outline MEIC R&D Issues View 1: EIC AC Recommendations View 2: MEIC Design Status View.
Page 1 Review 09/2010 MEIC ERL Based Circulator Electron Cooler Yaroslav Derbenev and Yuhong Zhang.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
Polarization in ELIC Yaroslav Derbenev Center for Advanced Study of Accelerators Jefferson Laboratory EIC Collaboiration Meeting, January 10-12, 2010 Stony.
Preliminary MEIC Ion Beam Formation Scheme Jiquan Guo for the MEIC design study team Oct. 5,
Synchronization Issues in MEIC Andrew Hutton, Slava Derbenev and Yuhong Zhang MEIC Ion Complex Design Mini-Workshop Jan. 27 & 28, 2011.
Progress on Design Studies of a High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF and Its Low to Medium Energy Staging Approach* S. A. Bogacz, P.
1 RHIC II – Ion Operation Wolfram Fischer RHIC II Workshop, BNL – Working Group: Equation of State 27 April 2005.
1 Machine issues for RHIC II Wolfram Fischer PANIC Satellite Meeting – New Frontiers at RHIC 30 October 2005.
JLEIC and Electron Cooling: An Introduction Yuhong Zhang JLEIC Discussion Forum, August 3, 2016.
P. Chevtsov for the ELIC Design Team
Electron Cooling Simulation For JLEIC
Beam-beam effects in eRHIC and MeRHIC
Deuteron Polarization in MEIC
Large Booster and Collider Ring
Electron Polarization In MEIC
Space Charge Effect Simulation Using DA Based FMM and Electron Cooling Simulation for JLab’s MEIC Project.
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Other issues and concepts under study Conclusions References
LHC (SSC) Byung Yunn CASA.
Collider Ring Optics & Related Issues
Beam-Beam Interaction in Linac-Ring Colliders
JLEIC Collaboration Meeting Spring 2017
Accelerator and Interaction Region
JLEIC ELECTRON COOLING SIMULATION
Low Energy Electron-Ion Collision
Introduction to the Accelerator and Design
Polarized Positrons in JLEIC
JLEIC Reaching 140 GeV CM Energy: Concept and Luminosity Estimate
Update on Alternative Design of jleic ion injector Complex B
MEIC New Baseline: Part 9
MEIC New Baseline: Part 10
Update on ERL Cooler Design Studies
Ion bunch formation options for 400GeV JLEIC
MEIC New Baseline: Luminosity Performance and Upgrade Path
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
JLEIC 200 GeV ion beam formation options
Yu.N. Filatov, A.M. Kondratenko, M.A. Kondratenko
HE-JLEIC: Boosting Luminosity at High Energy
Alternative Ion Injector Design
JLEIC Main Parameters with Strong Electron Cooling
MEIC New Baseline: Part 7
MEIC New Baseline: Performance and Accelerator R&D
More on MEIC Beam Synchronization
HE-JLEIC: Do We Have a Baseline?
Some Thoughts on the JLEIC Ion Injector
He Zhang, David Douglas, Yuhong Zhang MEIC R&D Meeting, 09/04/2014
SC Magnets with Small Apertures for JLEIC*
Optimization of JLEIC Integrated Luminosity Without On-Energy Cooling*
Updated MEIC Ion Beam Formation Scheme
Beam Synchronization in MEIC: The Problem, Scale and Prospect
JLEIC Ion Beam Formation options for 200 GeV
Choice of harmonic number with the consideration of ion beam formation
HE-JLEIC Luminosity Estimate
Presentation transcript:

Overview of MEIC Ion Complex and Ion Collider Ring Yuhong Zhang

A Green Field for MEIC Ion Complex This is a fact: there is no proton/ion beam at JLab. Disadvantages Cost of creating an ion complex is usually much higher than a lepton complex A fixed portion of cost goes to a must-have low-energy part of an ion complex such as sources, linac and boosters, creating a significantly high bar for entering into electron-ion collider business Being a lepton lab with a fixed target program, JLab in-house expertise and technical staffs on ion beams and collider are minimal. Opportunities MEIC colliding ion beams are not limited by any existing ion facility (unlike eRHIC proposal at BNL) A true green field design gives us freedom to take advantages of new technologies and design concepts for delivering excellent output of a collider in terms of high luminosity, high polarization, and machine stability. A superior electron-ion collider design at JLab is our only hope to off-set disadvantage of high project cost.

Requirements/Goals of MEIC Ion Beams An ion complex including an ion collider ring should meet the following project requirements Overall Forming and (long time) storing high current (up to 1 A) ion beams for collisions Covering a wide range of Ion species up to A=208 (Pb, Lead) Highly polarized ions including H, D, 3He and possibly Li Energy range from 12 to 60 (100) GeV for protons and corresponding energy per nucleon for ions (6 to 30 (50) GeV/u) Geometric Be large enough to accommodate 3 IPs and all necessary components Share a tunnel with the electron collider ring Beam quality and polarization Long (>8 hours) beam lifetime Achieving and maintaining high polarization (>80%) Achieving both longitudinal and transverse polarizations at all IPs Achieving longitudinal polarization at lease at one IP for deuterons

High Level Design Choices Ion beams should match electron beam from CEBAF Very high bunch repetition rate (up to 1.5 GHz) and CW, same as an electron beam from CEBAF (about 100 time high than RHIC bunch frequency) Small transverse emittances and very short bunch (~ 5 to 10 mm) (about 20 times short than RHIC bunch length) Very mall bunch charge, less than 4.2x109 protons (0.67 nC) per bunch (about 50 time smaller than RHIC bunch charge) High current of ion beam is achieved by high bunch repetition frequency  this design concept forms the foundation of high luminosity for MEIC Staged electron cooling For assisting beam accumulation, reducing emittances and bunch length, and suppressing IBS induced heating, to ensure high luminosity At the pre-booster, and at the ion collider ring, before and during collisions Figure-8 shape ion collider ring For accelerating and storing polarized deuteron beam for collisions (longitudinal polarization at one to two medium energy IPs) Energy independent spin tune, ensuring spin preservation and easy manipulation

Technical Design Choice No crossing of transition energies for any ion species during acceleration in any ring of ion complex Ion linac for fast acceleration after ion sources for suppressing space charge effect at very low energy Superconducting magnets for a compact collider ring, for small Laslett tune-shift (so higher ion current) and lower civil engineering cost (peak field less than 6 T)

Schematic Layout of MEIC Ion Complex source SRF Linac pre-booster-Accumulator ring Big booster Medium energy collider ring cooling Low /Medium energy beam transport Technical design considerations Avoid crossing transition energies (γt) at all stages of energy boosting Peak SC magnet field less than 6 T for baseline design

Scheme and Status of Ion Beam Formation Final Energy (GeV/c) Cooling Process Sources SRF linac 0.2 Stripping Prebooster (Accumulator-Ring) 3 DC electron Negative ion stripping injection Multi-turn stripping (heavy ions) Stacking/accumulating Big booster (Low energy collider ring) 12 ~ 20 Medium energy collider ring 60 (100) Electron RF debunching/rebunching Consideration/feasibility studies for polarized H- and D- carried out by Dudnikov (Mouns Inc.) & Danilov (Oak Ridge) Conceptual design of SRF linac and cooled pre-booster carried out by Ostroumov (ANL) & Erdelyi (NIU), beam dynamics and cooling studies planed Optics design, polarization and RF system for ion collider ring carried out at JLab A self-consistent parameter set for ions from source to collider ring yet to be created Design of the big booster not start yet

Flatness of Ion Beams εy / εx = κ2 + Q2 / γ2 IBS growth rates can be estimated as where κ is the x-y coupling parameter Dispersive cooling scheme can redistribute emittance decrement among longitudinal & transverse dimensions Equilibrium emittances of ion beams can be reached by a balance of multiple IBS heating and electron cooling τc = (τα)min Such a balance leads to an aspect ration of horizontal and vertical emttiances Energy (GeV) Circum. (m) Betatron Tune Best εx / εy Design 100 1000 28 12.8 12 60 5.0 5 40 2.3 20 - 1 250 2500 50 22.1 150 9.3 10 * x-y coupling κ is assumed 0.1 Our estimation indicates emittance ratio of MEIC is small, so at most an oval shape beam profile At very high energy of ELIC, proton beam can be quite flat, so opens possibility of employing crab-waist scheme for IR εy / εx = κ2 + Q2 / γ2

More Topics Ion SRF Linac Bela Erdelyi Ion Pre-booster Bela Erdelyi Collider Ring Optics and Related issues Vasiliy Morozov Beam Synchronization Andrew Hutton Ion Beam Stability Byung Yunn Ion Polarization Vasiliy Morozov ERL Based Circulator e-Cooler Yuhong Zhang