Complex Numbers Objectives:

Slides:



Advertisements
Similar presentations
Complex Numbers and Roots
Advertisements

Complex Numbers.
7.5 – Rationalizing the Denominator of Radicals Expressions
Copyright © 2013, 2009, 2005 Pearson Education, Inc.
© 2010 Pearson Education, Inc. All rights reserved
5-4 Complex Numbers (Day 1)
Simplify each expression.
COMPLEX NUMBERS Objectives
4.6 Perform Operations with Complex Numbers
Complex Numbers 3.3 Perform arithmetic operations on complex numbers
LIAL HORNSBY SCHNEIDER
If i = ,what are the values of the following
I can use the zero product property to solve quadratics by factoring
9-8 Completing the Square Warm Up Lesson Presentation Lesson Quiz
Chapter 5 Section 4: Complex Numbers. VOCABULARY Not all quadratics have real- number solutions. For instance, x 2 = -1 has no real-number solutions because.
Complex Numbers The imaginary number i is defined as so that Complex numbers are in the form a + bi where a is called the real part and bi is the imaginary.
If you need to hear it and go through it with me, go to the “LINKS” section of my webpage and open it up there!!
Complex Numbers Section 2.1. Objectives Rewrite the square root of a negative number as a complex number. Write the complex conjugate of a complex number.
Section 7.8 Complex Numbers  The imaginary number i  Simplifying square roots of negative numbers  Complex Numbers, and their Form  The Arithmetic.
6.2 – Simplified Form for Radicals
Simplify each expression.
Review and Examples: 7.4 – Adding, Subtracting, Multiplying Radical Expressions.
Complex Numbers OBJECTIVES Use the imaginary unit i to write complex numbers Add, subtract, and multiply complex numbers Use quadratic formula to find.
1.3 Complex Number System.
Simplify each expression.
Solving Quadratic Equations (finding roots) Example f(x) = x By Graphing Identifying Solutions Solutions are -2 and 2.
4.6 – Perform Operations with Complex Numbers Not all quadratic equations have real-number solutions. For example, x 2 = -1 has no real number solutions.
Sec 3.4 & Sec 3.5 Complex Numbers & Complex Zeros
Solving Quadratic Equations Section 1.3
Good Morning! Please get the e-Instruction Remote with your assigned Calculator Number on it, and have a seat… Then answer this question by aiming the.
Objectives Define and use imaginary and complex numbers.
5.6 Complex Numbers. Solve the following quadratic: x = 0 Is this quadratic factorable? What does its graph look like? But I thought that you could.
Section 3.2 Beginning on page 104
5.7 Complex Numbers 12/17/2012.
Complex Numbers and Roots
Objectives Define and use imaginary and complex numbers.
Objectives Define and use imaginary and complex numbers.
Copyright © 2014, 2010, 2006 Pearson Education, Inc. 1 Chapter 3 Quadratic Functions and Equations.
Lesson 7.5.  We have studied several ways to solve quadratic equations. ◦ We can find the x-intercepts on a graph, ◦ We can solve by completing the square,
SOLVING QUADRATIC EQUATIONS Unit 7. SQUARE ROOT PROPERTY IF THE QUADRATIC EQUATION DOES NOT HAVE A “X” TERM (THE B VALUE IS 0), THEN YOU SOLVE THE EQUATIONS.
5.7 Complex Numbers 12/4/2013. Quick Review If a number doesn’t show an exponent, it is understood that the number has an exponent of 1. Ex: 8 = 8 1,
5.6 – Quadratic Equations and Complex Numbers Objectives: Classify and find all roots of a quadratic equation. Graph and perform operations on complex.
Complex Numbers Day 1. You can see in the graph of f(x) = x below that f has no real zeros. If you solve the corresponding equation 0 = x 2 + 1,
Holt McDougal Algebra Complex Numbers and Roots 2-5 Complex Numbers and Roots Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Chapter 5.9 Complex Numbers. Objectives To simplify square roots containing negative radicands. To solve quadratic equations that have pure imaginary.
5-7: COMPLEX NUMBERS Goal: Understand and use complex numbers.
Ch. 4.6 : I Can define and use imaginary and complex numbers and solve quadratic equations with complex roots Success Criteria:  I can use complex numbers.
How do I use the imaginary unit i to write complex numbers?
Holt McDougal Algebra 2 Complex Numbers and Roots Warm UP Name the polynomial X 3 + 2x – 1 State whether the number is rational or irrational …
5.9 Complex Numbers Alg 2. Express the number in terms of i. Factor out –1. Product Property. Simplify. Multiply. Express in terms of i.
Algebra 2 Complex Numbers Lesson 4-8 Part 1. Goals Goal To identify, graph, and perform operations with complex numbers. Rubric Level 1 – Know the goals.
5.5 and 5.6 Solving Quadratics with Complex Roots by square root and completing the square method Solving Quadratics using Quadratic Formula.
Section 2.5 – Quadratic Equations
Simplify each expression.
Connections - Unit H - Complex Numbers
Objectives Define and use imaginary and complex numbers.
Simplify each expression.
Complex Numbers and Roots
Complex Numbers and Roots
SECTION 9-3 : SOLVING QUADRATIC EQUATIONS
3.2 Complex Numbers.
Complex Numbers and Roots
Simplify each expression.
Complex Numbers and Roots
Complex Number and Roots
Complex Numbers and Roots
Complex Numbers and Roots
Complex Numbers and Roots
Lesson 5–5/5–6 Objectives Be able to define and use imaginary and complex numbers Be able to solve quadratic equations with complex roots Be able to solve.
Complex Numbers and Roots
Presentation transcript:

Complex Numbers Objectives: I can define and use imaginary and complex numbers. I can solve equations with complex roots.

Simplify each expression. Warm Up Simplify each expression. 2. 1. 3.

You can see in the graph of f(x) = x2 + 1 below that f has no real zeros. If you solve the corresponding equation 0 = x2 + 1, you find that x = ,which has no real solutions. However, you can find solutions if you define the square root of negative numbers, which is why imaginary numbers were invented. The imaginary unit i is defined as . You can use the imaginary unit to write the square root of any negative number.

Example 1A: Simplifying Square Roots of Negative Numbers Express the number in terms of i. Factor out –1. Product Property. Simplify. Multiply. Express in terms of i.

Example 1B: Simplifying Square Roots of Negative Numbers Express the number in terms of i. Factor out –1. Product Property. Simplify. Express in terms of i.

Express the number in terms of i. Check It Out! Example 1a Express the number in terms of i. Factor out –1. Product Property. Product Property. Simplify. Express in terms of i.

Express the number in terms of i. Check It Out! Example 1c Express the number in terms of i. Factor out –1. Product Property. Simplify. Multiply. Express in terms of i.

Solving Equations Solve the equation.

Solve the equation. A. 5x2 + 90 = 0 B. x2 = –36

OYO Solve the equation. A. 9x2 + 25 = 0 B. x2 + 48 = 0

A complex number is a number that can be written in the form a + bi, where a and b are real numbers and i = . The set of real numbers is a subset of the set of complex numbers C. Every complex number has a real part a and an imaginary part b.

Example 4A: Finding Complex Zeros of Quadratic Functions Find the zeros of the function. f(x) = x2 + 10x + 26

Example 4B: Finding Complex Zeros of Quadratic Functions Find the zeros of the function. g(x) = x2 + 4x + 12

Find the zeros of the function. Check It Out! Example 4a Find the zeros of the function. f(x) = x2 + 4x + 13 x2 + 4x + 13 = 0 Set equal to 0. x2 + 4x + = –13 + Rewrite. x2 + 4x + 4 = –13 + 4 Add to both sides. (x + 2)2 = –9 Factor. Take square roots. x = –2 ± 3i Simplify.

Find the zeros of the function. Check It Out! Example 4b Find the zeros of the function. g(x) = x2 – 8x + 18 x2 – 8x + 18 = 0 Set equal to 0. x2 – 8x + = –18 + Rewrite. x2 – 8x + 16 = –18 + 16 Add to both sides. Factor. Take square roots. Simplify.

The solutions and are related The solutions and are related. These solutions are a complex conjugate pair. Their real parts are equal and their imaginary parts are opposites. The complex conjugate of any complex number a + bi is the complex number a – bi. If a quadratic equation with real coefficients has nonreal roots, those roots are complex conjugates. When given one complex root, you can always find the other by finding its conjugate. Helpful Hint

Example 5: Finding Complex Zeros of Quadratic Functions Find each complex conjugate. B. 6i A. 8 + 5i 0 + 6i 8 + 5i Write as a + bi. Write as a + bi. 0 – 6i Find a – bi. 8 – 5i Find a – bi. –6i Simplify.

Write a quadratic containing the given zero. A. 9 - i B.