Download presentation

Published byDerrick Danzey Modified over 5 years ago

1
**9-8 Completing the Square Warm Up Lesson Presentation Lesson Quiz**

Holt Algebra 1

2
Warm Up Simplify. 1. 2. 19 3. 4.

3
Warm Up Solve each quadratic equation by factoring. 5. x2 + 8x + 16 = 0 6. x2 – 22x = 0 7. x2 – 12x + 36 = 0 x = –4 x = 11 x = 6

4
Objective Solve quadratic equations by completing the square.

5
**An expression in the form x2 + bx is not a perfect square**

An expression in the form x2 + bx is not a perfect square. However, you can use the algorithm below to add a term to x2 + bx to form a trinomial that is a perfect square. This is called completing the square.

6
**Example 1: Completing the Square**

Complete the square to form a perfect square trinomial. A. x2 + 2x + B. x2 – 6x + x2 + 2x x2 + –6x Identify b. . x2 + 2x + 1 x2 – 6x + 9

7
Check It Out! Example 1 Complete the square to form a perfect square trinomial. a. x2 + 12x + b. x2 – 5x + x2 + 12x x2 + –5x Identify b. . x2 – 6x + x2 + 12x + 36

8
Check It Out! Example 1 Complete the square to form a perfect square trinomial. c. 8x + x2 + x2 + 8x Identify b. . x2 + 12x + 16

9
To solve a quadratic equation in the form x2 + bx = c, first complete the square of x2 + bx. Then you can solve using square roots.

10
**Solving a Quadratic Equation by Completing the Square**

11
**Example 2A: Solving x2 +bx = c**

Solve by completing the square. x2 + 16x = –15 The equation is in the form x2 + bx = c. Step 1 x2 + 16x = –15 Step 2 . Step 3 x2 + 16x + 64 = – Complete the square. Step 4 (x + 8)2 = 49 Factor and simplify. Take the square root of both sides. Step 5 x + 8 = ± 7 Step 6 x + 8 = 7 or x + 8 = –7 x = –1 or x = –15 Write and solve two equations.

12
**Example 2B: Solving x2 +bx = c**

Solve by completing the square. x2 – 4x – 6 = 0 Write in the form x2 + bx = c. Step 1 x2 + (–4x) = 6 Step 2 . Step 3 x2 – 4x + 4 = 6 + 4 Complete the square. Step 4 (x – 2)2 = 10 Factor and simplify. Take the square root of both sides. Step 5 x – 2 = ± √10 Step 6 x – 2 = √10 or x – 2 = –√10 x = 2 + √10 or x = 2 – √10 Write and solve two equations.

13
Check It Out! Example 2a Solve by completing the square. x2 + 10x = –9 The equation is in the form x2 + bx = c. Step 1 x2 + 10x = –9 Step 2 . Step 3 x2 + 10x + 25 = –9 + 25 Complete the square. Factor and simplify. Step 4 (x + 5)2 = 16 Take the square root of both sides. Step 5 x + 5 = ± 4 Step 6 x + 5 = 4 or x + 5 = –4 x = –1 or x = –9 Write and solve two equations.

14
**Example 3A: Solving ax2 + bx = c by Completing the Square**

Solve by completing the square. –3x2 + 12x – 15 = 0 Step 1 Divide by – 3 to make a = 1. x2 – 4x + 5 = 0 x2 – 4x = –5 Write in the form x2 + bx = c. x2 + (–4x) = –5 Step 2 . Step 3 x2 – 4x + 4 = –5 + 4 Complete the square.

15
Example 3A Continued Solve by completing the square. Step 3 x2 – 4x + 4 = –5 + 4 –3x2 + 12x – 15 = 0 Step 4 (x – 2)2 = –1 Factor and simplify. There is no real number whose square is negative, so there are no real solutions.

16
Lesson Quiz: Part I Complete the square to form a perfect square trinomial. 1. x2 +11x + 2. x2 – 18x + Solve by completing the square. 3. x2 – 2x – 1 = 0 4. 3x2 + 6x = 144 5. 4x x = 23 81 6, –8

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google