Complex Zeros of Polynomial

Slides:



Advertisements
Similar presentations
6.7 Using the Fundamental Theorem of Algebra
Advertisements

Notes 6.6 Fundamental Theorem of Algebra
PRECALCULUS I Complex Numbers
Complex Numbers Objectives:
2.5 complex 0’s & the fundamental theorem of algebra
The Fundamental Theorem of Algebra
The Fundamental Theorem of Algebra The Fundamental Theorem of Algebra
Copyright © Cengage Learning. All rights reserved.
SECTION 3.6 COMPLEX ZEROS; COMPLEX ZEROS; FUNDAMENTAL THEOREM OF ALGEBRA FUNDAMENTAL THEOREM OF ALGEBRA.
Factoring with Real Number Coefficients
Zeros of Polynomial Functions
Lesson 2.5 The Fundamental Theorem of Algebra. For f(x) where n > 0, there is at least one zero in the complex number system Complex → real and imaginary.
Sullivan Algebra and Trigonometry: Section 5.6 Complex Zeros; Fundamental Theorem of Algebra Objectives Utilize the Conjugate Pairs Theorem to Find the.
Copyright © Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions.
A3 3.4 Zeros of Polynomial Functions Homework: p eoo, odd.
9.9 The Fundamental Theorem of Algebra
PRE-AP PRE- CALCULUS CHAPTER 2, SECTION 5 Complex Zeros and the fundamental Theorem of Algebra.
 Find a polynomial with specified zeros.  For a polynomial function with integer coefficients, find the rational zeros and the other zeros, if possible.
1 Using the Fundamental Theorem of Algebra.  Talk about #56 & #58 from homework!!!  56 = has -1 as an answer twice  58 = when you go to solve x 2 +
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 2.4 Real Zeros of Polynomial Functions.
Warm Up. Find all zeros. Graph.. TouchesThrough More on Rational Root Theorem.
Copyright © 2009 Pearson Education, Inc. CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions.
Chapter 2 Polynomial and Rational Functions. Warm Up
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 3 Polynomial and Rational Functions.
THE FUNDAMENTAL THEOREM OF ALGEBRA. Descartes’ Rule of Signs If f(x) is a polynomial function with real coefficients, then *The number of positive real.
Complex Zeros and the Fundamental Theorem of Algebra.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2- 1.
3.6 Complex Zereos. The Fundamental Theorem of Algebra The Fundamental Theorem of Algebra says that every polynomial with complex coefficients must have.
1 Copyright © 2015, 2011, and 2007 Pearson Education, Inc. Start Up Day 13 Find all zeros of the given function:
THE LINEAR FACTORIZATION THEOREM. What is the Linear Factorization Theorem? If where n > 1 and a n ≠ 0 then Where c 1, c 2, … c n are complex numbers.
The Fundamental Theorem of Algebra It’s in Sec. 2.6a!!! Homework: p odd, all.
Copyright © 2011 Pearson, Inc. 2.5 Complex Zeros and the Fundamental Theorem of Algebra.
5.6 The Fundamental Theorem of Algebra. If P(x) is a polynomial of degree n where n > 1, then P(x) = 0 has exactly n roots, including multiple and complex.
1/27/2016 Math 2 Honors - Santowski 1 Lesson 21 – Roots of Polynomial Functions Math 2 Honors - Santowski.
Section 4.6 Complex Zeros; Fundamental Theorem of Algebra.
Objectives: Students will be able to… Determine the number of zeros of a polynomial function Find ALL solutions to a polynomial function Write a polynomial.
Today in Pre-Calculus Notes: –Fundamental Theorem of Algebra –Complex Zeros Homework Go over quiz.
2.5 The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra The Fundamental Theorem of Algebra – If f(x) is a polynomial of degree n, where.
Section 6: Fundamental Theorem of Algebra Use the Fundamental Theorem of Algebra and its corollary to write a polynomial equation of least degree with.
Solve polynomial equations with complex solutions by using the Fundamental Theorem of Algebra. 5-6 THE FUNDAMENTAL THEOREM OF ALGEBRA.
Every polynomial P(x) of degree n>0 has at least one zero in the complex number system. N Zeros Theorem Every polynomial P(x) of degree n>0 can be expressed.
Section 2-6 Finding Complex Zeros. Section 2-6 Fundamental Theorem of Algebra Fundamental Theorem of Algebra Linear Factorization Theorem Linear Factorization.
Copyright © Cengage Learning. All rights reserved. 4 Complex Numbers.
Chapter 2 – Polynomial and Rational Functions 2.5 – The Fundamental Theorem of Algebra.
1 Copyright © 2015, 2011, and 2007 Pearson Education, Inc. Start Up Day 13.
Theorems about Roots of Polynomial Equations and
Roots and Zeros 5.7.
Complex Zeros and the Fundamental Theorem of Algebra
Review & 6.6 The Fundamental Theorem of Algebra
7.5 Zeros of Polynomial Functions
Rational Root and Complex Conjugates Theorem
Theorems about Roots of Polynomial Equations and
3.8 Complex Zeros; Fundamental Theorem of Algebra
Lesson 2.5 The Fundamental Theorem of Algebra
4.5 The Fundamental Theorem of Algebra (1 of 2)
If a polynomial q(x) is divided by x – 4, the quotient is 2
Lesson 2.5 The Fundamental Theorem of Algebra
The Fundamental Theorem of Algebra
Warm-up: Find all real solutions of the equation X4 – 3x2 + 2 = 0
Rational Root Theorem.
Fundamental Theorem of Algebra
3.6 Polynomial Functions Part 2
4.5 The Fundamental Theorem of Algebra (1 of 2)
Polynomial and Rational Functions
Fundamental Theorem of Algebra
Copyright © Cengage Learning. All rights reserved.
1) Find f(g(x)) and g(f(x) to show that f(x) and g(x) are inverses
Pre-AP Pre-Calculus Chapter 2, Section 5
5.8 Analyzing Graphs of Polynomials
Presentation transcript:

Complex Zeros of Polynomial By: Mao & Na

Introduction: What you'll learn about : Two Major Theorems Complex Conjugate Zeros Factoring with Real Number Coefficients.

Video http://www.youtube.com/watch?v=J2TYyU ftI8k

Two Major Theorems Fundamental Theorem of Algebra: A polynomial function of degree n has n complex zeros( real or nonreal). Some of these zeros may be repeated. Liner Factorization Theorem: If f(x) is a polynomial function of degree n >0, then f(x) has precisely n linear factors and    f(x) = a(x –z1)(x –z2) ..... (x -zn) Where a is the leading coefficient of f(x) and z1, z2,….., zn are the complex zeros of f(x). The zi are not necessarily distinct numbers; some may be repeated.

Fundamental Polynomial Connections in the Complex Case: The following statements about a polynomial function f are equivalent if k is a complex number. 1. x = k is a solution (or root) of the equation f(x) = 0 2. is a zero of the function f. 3.x - k is a factor of f(x).

Complex Conjugate Zeros Suppose that f(x) is a polynomial function with real coefficients. If a and b are real numbers with b not equal 0 and a + bi is a zero of f(x), then its complex conjugate a - bi is also a zero of f(x).

Factoring with Real Number Coefficients Let f(s) be a polynomial function with real coefficients. The Linear Factorization Theorem tells us that f(x) can be factored into the form        f(x) = a(x –z1)(x –z2) ..... (x -zn), Where zi are complex numbers. Recall, however, that nonreal complex zeros occur in conjugate pairs. The product of x - (a + bi) and x - (a - bi) is [x-(a+bi)][x-(a-bi)] = x^(2) - (a-bi)x - (a+bi)x + (a+bi)(a-bi) = x^(2 ) - 2ax + ((a^2) + (b^2)).

Polynomial Function of Odd Degree Factoring with Real Number Coefficients Every polynomial function with real coefficients can be written as a product of linear factors and irreducible quadratic factors, each with real coefficients. Polynomial Function of Odd Degree Every polynomial function of odd degree with real coefficients has at least one real zero.

Complex Zeros of Polynomial Find complex zeros of polynomial function : F(x) = 3x^(4) + 5x^(3) + 25x^(2) + 45x – 18 http://www.youtube.com/watch?v=YoSs6KJ6I9c

/// / /

Assessment of Content Write the polynomial in standard from, and identify the zeros of the function and the x-intercept of it’s graph. 1.f(x)=(x-3i)(x+3i) A. x2+9; zeros:+-3i: x-intercepts: none B. x2+6; zeros:+-3i: x-intercepts: 2 2.f(x)=(x-1)(x-1)(x+2i)(x-2i) A. X4-3x+25x-4x+4 B. X4-2x+5x-8x+4 Write the polynomial function of minimum degree in standard form with real coefficient whose zeros included those listed. 3. I and – I A. x3+4 B. x2+1 4. 2,3 and I A. X4-5x3+7x-5x+6 B. X2-2x2+7x-3x+4 State how many complex and real zeros the function has. 5. f(x)=x2-2x+7 A. 2 complex zeros: none real B. 4 complex zeros: 7 real 6. F(x)=x4-5x3+x2-3x+6

Assessment of Content continue Find all of the zeros and write a linear factorization of the function. 7. f(x)= x3+4x-5 A. Zeros: x=1, x = -1/2 ± √ 19/2 i ; f(x) = ¼ (x-1)(2x+1+ √19i) (2x+1- √ 19i) B. Zeros: x=2, x = -1/2 ± √ 19/2 i ; f(x) = ¼ (x-1)(2x+1+ √19i) (2x+1- √ 19i) 8. f(x)= x4+x3+5x2-x-6 A. Zeros: x= ± 1, x = -1/2 ± √ 23/2i ; f(x) = ¼ (x-1)(x+1)(2x+1+ √ 19i) (2x+1- √ 23i B. . Zeros: x= ± 1, x = -1/2 ± √ 23/2i ; f(x) = ¼ (x-1)(x+1)(2x+1+ √ 19i) (2x+1- √ 23i Using the given zeros, find all of the zeros and write a linear factorization of f(x). 9. 1+i is a zeros of f(x)=x4-2x3-x2+6x-6 A. Zeros: x=2 x = -1/2 ± √ 19/2 i ; f(x) = ¼ (x-1)(3x+1+ √ 19i) (3x+1- √ 19i) B. Zeros: x=1, x = -1/2 ± √ 19/2 i ; f(x) = ¼ (x-1)(2x+1+ √ 19i) (2x+1- √ 19i) 10. 3-2i is a zeros of f(x)=x4-6x3+11x2+12x-26 A. Zeros: x +- √ 2. x =3 ± 2i: f(x) = (x- √ 2) ( x+ √ 2)(x-3+2i)(x-3-2i). B. Zeros: x +- √ 4. x =3 ± 3i: f(x) = (x- √ 2) ( x+ √ 2)(x-3+2i)(x-3-2i).

Answer Key x2+9; zeros:+-3i: x-intercepts: none X4-2x+5x-8x+4 x2+1 2 complex zeros: none real 4 complex zeros: 2 real Zeros: x=1, x = -1/2+- √ 19/2 i ; f(x) = ¼ (x-1)(2x+1+ √19i) (2x+1- √ 19i) Zeros: x= ± 1, x = -1/2+- square root 23/2i ; f(x) = ¼ (x-1)(x+1)(2x+1+square root 19i) (2x+1- square root 23i) Zeros: x +- √ 3. x =1 +- i: f(x) = (x- √ 3) ( x+ square 3)(x-1+i)(x-1-i). Zeros: x +- √ 2. x =3 +- 2i: f(x) = (x- √ 2) ( x+ √ 2)(x-3+2i)(x-3-2i).

Works Cited Demana, Franklin. Waits, Bert K.. Foley, Gregory D.. Kennedy, Daniel. Pre- Calculus. Eight Edition. Graphical, Numerical, Algebraic. "Finding Complex Zeros of a Polynomial Function." YouTube. YouTube, 10 Oct. 2011. Web. 21 Jan. 2013. "X Finds Out His Value." YouTube. YouTube, 31 Dec. 2008. Web. 21 Jan. 2013.