Selenium Hyperaccumulators Facilitate Selenium-Tolerant Neighbors via Phytoenrichment and Reduced Herbivory  Ali F. El Mehdawi, Colin F. Quinn, Elizabeth A.H.

Slides:



Advertisements
Similar presentations
Binocular rivalry Colin W.G. Clifford Current Biology Volume 19, Issue 22, Pages R1022-R1023 (December 2009) DOI: /j.cub Copyright ©
Advertisements

The Circadian Timekeeping System of Drosophila Paul E. Hardin Current Biology Volume 15, Issue 17, Pages R714-R722 (September 2005) DOI: /j.cub
The Origins and Evolution of Vertebrate Metamorphosis Vincent Laudet Current Biology Volume 21, Issue 18, Pages R726-R737 (September 2011) DOI: /j.cub
Social Calls Predict Foraging Success in Big Brown Bats
David G. Hazlerigg, Francis J.P. Ebling, Jonathan D. Johnston 
Combination effects of milk feeding methods and starter crude protein concentration: Evaluation on performance and health of Holstein male calves  D.
Volume 16, Issue 13, Pages (July 2006)
Niche construction drives social dependence in hermit crabs
Ocean life breaking rules by building shells in acidic extremes
Volume 20, Issue 4, Pages (February 2010)
Volume 23, Issue 19, Pages (October 2013)
Volume 16, Issue 22, Pages (November 2006)
Animal Vision: Rats Watch the Sky
Episodic Memory: Rats Master Multiple Memories
Pre-constancy Vision in Infants
Sensory-Motor Integration: More Variability Reduces Individuality
Leaf Mimicry in a Climbing Plant Protects against Herbivory
Thigmomorphogenesis Current Biology
Volume 23, Issue 13, Pages (July 2013)
A Statistical Description of Plant Shoot Architecture
Sleep: How Many Switches Does It Take To Turn Off the Lights?
Volume 20, Issue 6, Pages (March 2010)
Physarum Current Biology
Volume 22, Issue 13, Pages (July 2012)
Volume 27, Issue 11, Pages R450-R452 (June 2017)
Antarctic sea ice losses drive gains in benthic carbon drawdown
A Statistical Description of Plant Shoot Architecture
Visual Attention: Size Matters
Marianne Elias, Colin Fontaine, F.J. Frank van Veen  Current Biology 
Elephant cognition Current Biology
Volume 20, Issue 4, Pages (February 2010)
High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser  Sérgio Timóteo, Jaime Albino Ramos, Ian Phillip.
Volume 24, Issue 2, Pages R60-R61 (January 2014)
Andrew N. Radford, Amanda R. Ridley  Current Biology 
Children, but Not Chimpanzees, Prefer to Collaborate
Rapid Innate Defensive Responses of Mice to Looming Visual Stimuli
Volume 15, Issue 13, Pages (July 2005)
Better Fruits and Vegetables through Sensory Analysis
Tardigrades survive exposure to space in low Earth orbit
Jennifer L. Hoy, Iryna Yavorska, Michael Wehr, Cristopher M. Niell 
Volume 16, Issue 6, Pages (March 2006)
Plant Stem Cells Current Biology
Dustin R. Rubenstein, Irby J. Lovette  Current Biology 
Plant Defense: Timing Is Everything
Event-Based Prospective Memory in the Rat
Restorative Justice in Children
Fish choose appropriately when and with whom to collaborate
Honeybee buzz attenuates plant damage by caterpillars
Animal Behavior: Timing in the Wild
Daniel Hanus, Josep Call  Current Biology 
Steven K. Schwartz, William E. Wagner, Eileen A. Hebets 
Noa Raz, Ella Striem, Golan Pundak, Tanya Orlov, Ehud Zohary 
Coral Bleaching Independent of Photosynthetic Activity
A miRNA Involved in Phosphate-Starvation Response in Arabidopsis
Volume 27, Issue 17, Pages e2 (September 2017)
Self-Control in Chimpanzees Relates to General Intelligence
Volume 24, Issue 15, Pages (August 2014)
Marine Biology: New Light on Growth in the Cold
Volume 21, Issue 9, Pages (September 2014)
Volume 16, Issue 13, Pages (July 2006)
Kevin R. Foster, Thomas Bell  Current Biology 
Expression Partitioning between Genes Duplicated by Polyploidy under Abiotic Stress and during Organ Development  Zhenlan Liu, Keith L. Adams  Current.
David G. Hazlerigg, Francis J.P. Ebling, Jonathan D. Johnston 
Nadine Krüger, Iva M. Tolić-Nørrelykke  Current Biology 
Volume 18, Issue 9, Pages (May 2008)
Thigmomorphogenesis Current Biology
Memory Reactivation Enables Long-Term Prevention of Interference
Volume 21, Issue 9, Pages (September 2014)
Volume 18, Issue 5, Pages R198-R202 (March 2008)
Maria J.S. Guerreiro, Lisa Putzar, Brigitte Röder  Current Biology 
Presentation transcript:

Selenium Hyperaccumulators Facilitate Selenium-Tolerant Neighbors via Phytoenrichment and Reduced Herbivory  Ali F. El Mehdawi, Colin F. Quinn, Elizabeth A.H. Pilon-Smits  Current Biology  Volume 21, Issue 17, Pages 1440-1449 (September 2011) DOI: 10.1016/j.cub.2011.07.033 Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 1 Size Comparison of A. ludoviciana and S. ericoides Growing around Hyperaccumulator Species A. bisulcatus and S. pinnata or Less Than Four Meters from Hyperaccumulator Vegetation in Seleniferous Habitat in Fort Collins, Colorado (A) and (B) show shoot biomass, (C) and (D) show stem length, and (E) and (F) show number of leaves. Values shown represent means ± standard error of the mean (SEM) (n = 16); different lowercase letters above bars indicate significantly different means (p < 0.05). Current Biology 2011 21, 1440-1449DOI: (10.1016/j.cub.2011.07.033) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 2 Selenium and Sulfur Concentration in Leaves and Soil near Hyperaccumulators and Nonhyperaccumulators (A–D) Selenium (Se) and sulfur (S) concentration in leaves of A. ludoviciana and S. ericoides collected from around hyperaccumulators (A. bisulcatus and S. pinnata) or from around nonhyperaccumulator vegetation in the same seleniferous habitat. (E and F) Soil Se and S concentration adjacent to the hyperaccumulators and nonhyperaccumulators. Values shown represent means ± SEM (n = 16); different lowercase letters above bars indicate significantly different means (p < 0.05). Current Biology 2011 21, 1440-1449DOI: (10.1016/j.cub.2011.07.033) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 3 Root Direction of Neighboring Plants Relative to Hyperaccumulators and Nonaccumulators A. ludoviciana in relation to A. bisulcatus (A), S. ericoides in relation to A. bisulcatus (B), A. ludoviciana in relation to S. pinnata (C), S. ericoides in relation to S. pinnata (D), A. ludoviciana in relation to M. sativa (E), and S. ericoides in relation to M. sativa (F). Values shown represent means ± SEM (n = 4 for A–D and n = 3 for E and F). Current Biology 2011 21, 1440-1449DOI: (10.1016/j.cub.2011.07.033) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 4 Relation of Arthropods and Damaged Leaves per Plant to Growing Distance from Hyperaccumulators and Nonhyperaccumulators (A) and (B) show the number of arthropods per plant on A. ludoviciana and S. ericoides, respectively; (C) and (D) show the number of leaves damaged per plant of A. ludoviciana and S. ericoides, respectively, when growing close to hyperaccumulator species (A. bisulcatus and S. pinnata) or away from hyperaccumulators (nonHA). Values shown represent means ± SEM (n = 16); different lowercase letters above bars indicate significantly different means (p < 0.05). Current Biology 2011 21, 1440-1449DOI: (10.1016/j.cub.2011.07.033) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 5 Choice Experiment Comparing Herbivory, Survival, and Selenium Accumulation of Grasshoppers Given the Choice to Feed on A. ludoviciana or S. ericoides Plants Collected Either Next to Hyperaccumulator A. bisulcatus or Next to Nonhyperaccumulators (A) shows absolute plant height loss, (B) shows relative plant height loss, (C) shows number of leaves lost, (D) shows grasshopper survival on A. ludoviciana, (E) shows grasshopper survival on S. ericoides, and (F) shows grasshopper Se concentration in animals from the field at day 0 and in animals collected from A. ludoviciana or S. ericoides after 6 days of cocultivation. Values shown represent means ± SEM (n = 9 for A–C; n = 3 for D and E; n = 6–8 for F). Different lowercase letters above bars indicate significantly different means (p < 0.05). Current Biology 2011 21, 1440-1449DOI: (10.1016/j.cub.2011.07.033) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 6 Nonchoice Experiment Comparing Herbivory, Survival, and Se Accumulation of Grasshoppers Fed A. ludoviciana or S. ericoides Plants Collected Next to Hyperaccumulator A. bisulcatus or Next to Nonhyperaccumulators (A) shows absolute plant height loss, (B) shows relative plant height loss, (C) shows number of leaves lost, (D) shows grasshopper survival on A. ludoviciana, (E) shows grasshopper survival on S. ericoides, and (F) shows grasshopper Se concentration in animals from the field at day 0 and in animals collected after 6 days of cocultivation with A. ludoviciana or S. ericoides. Values shown represent means ± SEM (n = 6 for A–C; n = 1 for D and E; n = 6–8 for F). Different lower case letters above bars indicate significantly different means (p < 0.05). Current Biology 2011 21, 1440-1449DOI: (10.1016/j.cub.2011.07.033) Copyright © 2011 Elsevier Ltd Terms and Conditions

Figure 7 Representative Plants Used in the Laboratory Grasshopper Herbivory Experiments (A) and (B) show A. ludoviciana, and (C) and (D) show S. ericoides plants used in the laboratory grasshopper herbivory experiments. The plants were collected in the field next to hyperaccumulator A. bisulcatus (HA) or nonhyperaccumulator (nonHA) neighbors. Before exposure to grasshopper herbivory (A and C) and after 6 days of exposure to grasshopper herbivory in the nonchoice experiment (B and D) (data shown in Figure 6). The inset in (B) shows a representative grasshopper at the end of the experiment. Current Biology 2011 21, 1440-1449DOI: (10.1016/j.cub.2011.07.033) Copyright © 2011 Elsevier Ltd Terms and Conditions