(Using symbols: a is the square root of b if a2 = b.)

Slides:



Advertisements
Similar presentations
The Radical Square Root
Advertisements

How do we handle fractional exponents?
Unit: Radical Functions 7-2: Multiplying and Dividing Radical Expressions Essential Question: I put my root beer in a square cup… now it’s just beer.
Simplifying Radicals. Perfect Squares Perfect Cubes
Roots & Radical Exponents By:Hanadi Alzubadi.
5.2 Multiplying and Dividing Rational Expressions BobsMathClass.Com Copyright © 2010 All Rights Reserved. 1 Multiplying Rational Expressions Recall the.
Algebra 1 1. Essential Properties to Understand  Product Property of Like Bases  Division Property of Like Bases  Division Property of Equality  Product.
Multiplying, Dividing, and Simplifying Radicals
3.2 Products and Quotients of Monomials BobsMathClass.Com Copyright © 2010 All Rights Reserved. 1 Your Turn Problem #1 Answer: Product Rule of Exponents.
If m and n are positive integers and a and b are real numbers (b0 when it is a denominator), then: Let’s review some properties of exponents where the.
Multiplying, Dividing, and Simplifying Radicals Multiply radical expressions. 2.Divide radical expressions. 3.Use the product rule to simplify radical.
7.2 Quadratic Equations and the Square Root Property BobsMathClass.Com Copyright © 2010 All Rights Reserved. 1 A second degree equation in one variable.
6.3 Combining and Simplifying Radicals that Contain Variables BobsMathClass.Com Copyright © 2010 All Rights Reserved. 1 Your Turn Problem #1 Combining.
Slide Copyright © 2012 Pearson Education, Inc.
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 Hawkes Learning Systems. All rights reserved. Hawkes Learning Systems: College Algebra.
Dividing and Simplifying Just as the root of a product can be expressed as the product of two roots, the root of a quotient can be expressed as the quotient.
Rational Exponents, Radicals, and Complex Numbers
Tidewater Community College
Algebra Roots and Radicals. Radicals (also called roots) are directly related to exponents. Roots and Radicals.
Copyright © Cengage Learning. All rights reserved. Roots, Radical Expressions, and Radical Equations 8.
Algebra II Rational Exponents Lesson 6.4
P2 Exponents & Radicals. What does an exponent tell you?? Repeated Multiplication How many times you multiply the base by itself.
Roots and Radicals. Radicals (also called roots) are directly related to exponents.
R8 Radicals and Rational Exponent s. Radical Notation n is called the index number a is called the radicand.
6.1 – Rational Exponents Radical Expressions Finding a root of a number is the inverse operation of raising a number to a power. This symbol is the radical.
Unit 2 Algebra Investigations Lesson 3: Rational and Radical Expressions Notes 3.4: Simplify Radical Expressions.
Copyright © 2015, 2011, 2007 Pearson Education, Inc. 1 1 Chapter 8 Rational Exponents, Radicals, and Complex Numbers.
Algebra 2: Unit 8 Roots and Radicals. Radicals (also called roots) are directly related to exponents. Roots and Radicals.
Radical The whole equation is called the radical. C is the radicand, this must be the same as the other radicand to be able to add and subtract.
Chapter 10.5 Notes Part I: Simplify Radical Expressions Goal: You will simplify radical expressions.
Radicals Simplify radical expressions using the properties of radicals
Properties and Rules for Radicals Principal square root of a Negative square root of a Cube root of a nth root of a nth root of a n if n is an even and.
Exponents and Radicals Objective: To review rules and properties of exponents and radicals.
Copyright © Cengage Learning. All rights reserved. Roots, Radical Expressions, and Radical Equations 8.
Copyright © Cengage Learning. All rights reserved. Fundamental Concepts of Algebra 1.2 Exponents and Radicals.
Copyright © Cengage Learning. All rights reserved. 8 Radical Functions.
Changing Bases. Base 10: example number ³ 10² 10¹ 10 ⁰ ₁₀ 10³∙2 + 10²∙1 + 10¹∙ ⁰ ∙0 = 2120 ₁₀ Implied base 10 Base 8: 4110 ₈ 8³ 8².
7-2 Properties of Rational Exponents (Day 1) Objective: Ca State Standard 7.0: Students add, subtract, multiply, divide, reduce, and evaluate rational.
Simplifying Radicals Binomial Conjugate:
Vocabulary Unit 4 Section 1:
Slide 7- 1 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Splash Screen Unit 6 Exponents and Radicals. Splash Screen Essential Question: How do you simplify radical expressions?
Splash Screen Unit 6 Exponents and Radicals. Splash Screen Essential Question: How do you evaluate expressions involving rational exponents?
Chapter R Section 7: Radical Notation and Rational Exponents
Rational (Fraction) Exponent Operations The same operations of when to multiply, add, subtract exponents apply with rational (fraction) exponents as did.
12.1 Rational Exponents 12.2 Simplifying Radicals.
7.1 – Radicals Radical Expressions
Radical Expressions Finding a root of a number is the inverse operation of raising a number to a power. radical sign index radicand This symbol is the.
6.2 Multiplying and Dividing Radical Expressions
Multiplying and Dividing Radical Expressions
Simplifying Square Roots
Operations with Rational (Fraction) Exponents
Simplifying Radical Expressions
The exponent is most often used in the power of monomials.
The Radical Square Root
Lesson #1: Simplifying Radicals (For use with Sections 7-2 & 7-3)
Evaluate nth Roots and Use Rational Exponents
Radicals Simplify, Add, Subtract, Multiply, Divide and Rationalize
Unit 3B Radical Expressions and Rational Exponents
Radicals Radical Expressions
Objectives Rewrite radical expressions by using rational exponents.
Radicals.
5.2 Properties of Rational Exponents and Radicals
Simplifying Radicals Unit 10 Lesson 2.
7.1 – Radicals Radical Expressions
Square Roots and Cubes Roots of Whole Numbers
P.3 Radicals and Rational Exponents
7.1 – Radicals Radical Expressions
Presentation transcript:

Square Roots: The square root of a number is one of its two equal factors. (Using symbols: a is the square root of b if a2 = b.) Example: The square root of 36 is 6 since 66 = 36. The square root of 36 is also – 6, since (– 6)  (– 6) = 36. The positive square root is called the principle square root. We will mainly be concerned with the principle square root. The number under the radical symbol is called the radicand. (49 and 81 are the radicands.) Note: Negative real numbers do not have square roots because any nonzero real number is positive when squared. (No number multiplied by itself will give a negative real number.) Example 1. Simplify the following radical expressions. Answers: Your Turn Problem #1 Simplify the following radical expressions.

These examples are read: “the cube root of 8 is 2” In general, x is a cube root of of y if x3=y. Also note, the cube root of negative number is a negative number. Example 2. Simplify the following radical expressions. Answers: Your Turn Problem #2 Simplify the following radical expressions. Answers:

Thus far, we have covered square roots and cube roots Thus far, we have covered square roots and cube roots. There are also nth roots: 4th roots, 5th roots, etc. Examples: The numbers which designate the root is called the index #. The index # for the square root is a 2. However it is not usually written. Example 3. Simplify the following radical expressions. Answers: Your Turn Problem #3 Simplify the following radical expressions. Answers: Note: If the index # is even, there is no real number for the nth root of a negative number.

Properties of Radicals 1st, some examples where the radical expression is raised to a power equal to the index #. Recall that negative numbers don’t have real number square roots. It is also true that negative numbers don’t have real number nth roots if n is an even number. For the following properties, we’ll assume that the radicand is positive for any even number index. A few more examples where the radicand has an exponent equal to the index. Let’s make some observations, then we can state another property. Writing Radical Expressions in Simplest Radical Form

Procedure: Writing Radical Expressions in Simplest Radical Form: Write the square root as a product of two square roots where one of the radicands is the largest perfect square that divides evenly into the original number. Then replace the square root with the whole number it is equal to. Leave as multiplication. Note: examples of perfect squares are 1, 4, 9, 16, 25, 36, 49, etc. The factors of 40 are: The largest perfect square is 4. So we will rewrite the square root using the 4 and 10. Now replace the square root of 4 with 2 and we’re done. The factors of 72 are: The largest perfect square is 36. So we will rewrite the square root using the 36 and 2. Now replace the square root of 36 with 6 and we’re done.

Another Method for Writing Square Roots in Simplest Radical Form Some students have a difficult time with the previous method. This method is a little more writing but the process is more straightforward. 1. Find the prime factorization of the given radicand. 2. Circle the pairs. 3. For every pair, one of the circled numbers will be written in front of the radical. Whatever numbers are not circled stay under the radical. (Multiply if more than one number.) 1. Write the prime factorization of 40. 2. Circle the pairs (only a pair of 2’s). 3. One 2 is written in front, the 2 and 5 remain inside. 1. Write the prime factorization of 72. 2. Circle the pairs (pair of 2’s & 3’s). 3. The 2 & 3 are written in front, the 2 remains inside. Your Turn Problem #4 Simplify the following radical expressions. Answers:

Writing Cube Roots in Simplest Radical Form Method 1. Write the cube root as a product of two cube roots where one of the radicands is the largest perfect cube that divides evenly into the original number. Then replace the cube root with the integer it is equal to. Leave as multiplication. Note: examples of perfect cubes are 1, 8, 27, 64, 125, etc. Rewrite the 270 with 27 and 10 since 27 is a perfect cube. Then replace the cube root of 27 with 3. Rewrite the 56 with 8 and 7 since 8 is a perfect cube. Then replace the cube root of 8 with 2. Method 2. Again, many students have a difficult time with method 1. This method is a little more writing but the process is more straightforward. 1. Find the prime factorization of the given radicand. 2. Circle the groups of 3 equal factors. 3. For every group of 3, one of the circled numbers will be written in front of the radical. Whatever numbers are not circled stay under the radical. (Multiply if more than one number.) 1. Write the prime factorization of 56. 1. Write the prime factorization of 72. 2. Circle the groups of 3 equal factors. 2. Circle the groups of 3 equal factors. 3. One 2 is written in front, the 7 stays inside. 3. The 3 is written in front, the 2 & 5 stay inside.

Your Turn Problem #5 Simplify the following radical expressions. (Write in simplest radical form.) Answers: Simplifying Square Roots that Involve Fractions We will now need the following property: In general, Property for Simplifying Radical Expressions that Involve Quotients.

Separate into the square root of the numerator divided by the square root of the denominator. Then simplify each (write both in simplest radical form). Separate into the square root of the numerator divided by the square root of the denominator. Then simplify each (write both in simplest radical form). Your Turn Problem #6 Simplify the following radical expressions. Answers:

In the last example, the denominators were perfect square roots In the last example, the denominators were perfect square roots. The numerator still contained a radical but not the denominator. A rational expression (a fraction) is not considered simplified if it contains a radical in the denominator. The process of “rationalizing the denominator” will take care of this. Rationalizing the Denominator (Square Roots) Observe the following: If a square root is multiplied by itself, the result is the radicand (without square root). Procedure: Rationalizing the denominator of a square root. (If the denominator contains a non-perfect square root) 2. Then simplify. Next Slide

Separate into the square root of the numerator divided by the square root of the denominator. Then multiply the denominator by itself and multiply the numerator by the same number. This can be simplified differently. The denominator can be written in simplest radical form 1st before multiplying by itself. Your Turn Problem #7 Simplify the following radical expressions. Answers:

Rationalizing the Denominator (Cube Roots) Observe the following: A perfect cube has 3 equal factors. If a cube root is multiplied by itself, the result is not a whole number. Procedure: Rationalizing the denominator of a cube root. (If the denominator contains a non-perfect cube root) 1. Multiply the denominator by another cube root which will make it a perfect cube root (i.e. 8, 27, 125, etc). Whatever we multiply by the denominator, we need to multiply by the numerator. 2. The denominator should be a whole number. Write the numerator in simplest radical form. Reduce the fraction if possible. Next Slide

Simplify the following radical expressions. Answer: Your Turn Problem #8 Simplify the following radical expressions. The End B.R. 10-16-06 Answers: