Elementary Statistics

Slides:



Advertisements
Similar presentations
Chapter 12 Probability © 2008 Pearson Addison-Wesley. All rights reserved.
Advertisements

Introduction to Probability and Statistics Chapter 5 Discrete Distributions.
Note 6 of 5E Statistics with Economics and Business Applications Chapter 4 Useful Discrete Probability Distributions Binomial, Poisson and Hypergeometric.
QBM117 Business Statistics
Chapter 5 Probability Distributions
Class notes for ISE 201 San Jose State University
McGraw-Hill Ryerson Copyright © 2011 McGraw-Hill Ryerson Limited. Adapted by Peter Au, George Brown College.
Chapter 5 Several Discrete Distributions General Objectives: Discrete random variables are used in many practical applications. These random variables.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Discrete Random Variables Chapter 4.
Statistics 1: Elementary Statistics Section 5-4. Review of the Requirements for a Binomial Distribution Fixed number of trials All trials are independent.
Poisson Random Variable Provides model for data that represent the number of occurrences of a specified event in a given unit of time X represents the.
Introduction Discrete random variables take on only a finite or countable number of values. Three discrete probability distributions serve as models for.
Geometric Distribution
Copyright ©2011 Nelson Education Limited The Binomial Experiment n identical trials. 1.The experiment consists of n identical trials. one of two outcomes.
Using Probability and Discrete Probability Distributions
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
MTH3003 PJJ SEM I 2015/2016.  ASSIGNMENT :25% Assignment 1 (10%) Assignment 2 (15%)  Mid exam :30% Part A (Objective) Part B (Subjective)  Final Exam:
MATB344 Applied Statistics Chapter 5 Several Useful Discrete Distributions.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Binomial Experiments Section 4-3 & Section 4-4 M A R I O F. T R I O L A Copyright.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 5 Discrete Random Variables.
Introduction to Probability and Statistics Thirteenth Edition Chapter 5 Several Useful Discrete Distributions.
Probability Distributions u Discrete Probability Distribution –Discrete vs. continuous random variables »discrete - only a countable number of values »continuous.
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Mistah Flynn.
4.2 Binomial Distributions
Probability Distributions, Discrete Random Variables
STATISTIC & INFORMATION THEORY (CSNB134) MODULE 7B PROBABILITY DISTRIBUTIONS FOR RANDOM VARIABLES ( POISSON DISTRIBUTION)
 A probability function is a function which assigns probabilities to the values of a random variable.  Individual probability values may be denoted.
STATISTIC & INFORMATION THEORY (CSNB134) MODULE 7A PROBABILITY DISTRIBUTIONS FOR RANDOM VARIABLES (BINOMIAL DISTRIBUTION)
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
MATB344 Applied Statistics Chapter 5 Several Useful Discrete Distributions.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Unit 4 Review. Starter Write the characteristics of the binomial setting. What is the difference between the binomial setting and the geometric setting?
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Chap 5-1 Chapter 5 Discrete Random Variables and Probability Distributions Statistics for Business and Economics 6 th Edition.
1. 2 At the end of the lesson, students will be able to (c)Understand the Binomial distribution B(n,p) (d) find the mean and variance of Binomial distribution.
12.1 Discrete Probability Distributions (Poisson Distribution)
Discrete Probability Distributions Chapter 4. § 4.3 More Discrete Probability Distributions.
Copyright (C) 2002 Houghton Mifflin Company. All rights reserved. 1 Understandable Statistics Seventh Edition By Brase and Brase Prepared by: Lynn Smith.
8.2 The Geometric Distribution 1.What is the geometric setting? 2.How do you calculate the probability of getting the first success on the n th trial?
Chapter Five The Binomial Probability Distribution and Related Topics
MECH 373 Instrumentation and Measurements
Math 4030 – 4a More Discrete Distributions
Discrete Random Variables
Discrete Probability Distributions
Discrete Random Variables
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Lecture Slides Elementary Statistics Eleventh Edition
Mean, Variance, and Standard Deviation for the Binomial Distribution
Discrete Random Variables
Elementary Statistics
ENGR 201: Statistics for Engineers
S2 Poisson Distribution.
3.4 The Binomial Distribution
Statistics 1: Elementary Statistics
Introduction to Probability and Statistics
The Binomial Distribution
Statistics 1: Elementary Statistics
STATISTICAL MODELS.
Binomial Distribution
Chapter 4 Discrete Probability Distributions.
DISCRETE RANDOM VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS
Discrete Probability Distributions
If the question asks: “Find the probability if...”
Lecture 11: Binomial and Poisson Distributions
Introduction to Probability and Statistics
Chapter 11 Probability.
Presentation transcript:

Elementary Statistics Chapter 4 Probability Distributions Binomial & Poisson Probability Distributions

The Binomial Experiment The experiment consists of n identical trials. Each trial results in one of two outcomes, success (S) or failure (F). The probability of success on a single trial is p and remains constant from trial to trial. The probability of failure is q = 1 – p. The trials are independent. We are interested in x, the number of successes in n trials.

The Mean and Standard Deviation For a binomial experiment with n trials and probability p of success on a given trial, the measures of center and spread are:

Example What is the probability that more than 3 shots hit the target? .000 1 .007 2 .058 3 .263 4 .672 5 1.000 What is the probability that more than 3 shots hit the target? P(x > 3) = 1 - P(x  3) = 1 - .263 = .737 Check from formula: P(x > 3) = .7373

Example Here is the probability distribution for x = number of hits. What are the mean and standard deviation for x? m

The Poisson Random Variable The Poisson random variable x is often a model for data that represent the number of occurrences of a specified event in a given unit of time or space. Examples: The number of calls received by a switchboard during a given period of time. The number of machine breakdowns in a day The number of traffic accidents at a given intersection during a given time period.

The Poisson Probability Distribution Let X be a Poisson random variable. The probability of x = k occurrences of this event is For values of k = 0, 1, 2, … The mean and standard deviation of the Poisson random variable are Mean: m Standard deviation:

Example The average number of traffic accidents on a certain section of highway is two per week. Find the probability of exactly three accidents during a one-week period.

Example What is the probability that 8 or more accidents happen? .135 1 .406 2 .677 3 .857 4 .947 5 .983 6 .995 7 .999 8 1.000 P(x  8) = 1 - P(x < 8) = 1 – P(x  7) = 1 - .999 = .001

Key Concepts The Binomial Random Variable 1. Five characteristics: n identical trials, each resulting in either success S or failure F; probability of success is p and remains constant from trial to trial; trials are independent; and x is the number of successes in n trials. 2. Calculating binomial probabilities a. Formula: b. Cumulative binomial tables 3. Mean of the binomial random variable: m = np 4. Variance and standard deviation: s 2 = npq and

Key Concepts II. The Poisson Random Variable 1. The number of events that occur in a period of time or space, during which an average of m such events are expected to occur 2. Calculating Poisson probabilities a. Formula: b. Cumulative Poisson tables 3. Mean of the Poisson random variable: E(x) = m 4. Variance and standard deviation: s 2 = m and