f3 measurements by Belle

Slides:



Advertisements
Similar presentations
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
Advertisements

6/2/2015Attila Mihalyi - Wisconsin1 Recent results on the CKM angle  from BaBar DAFNE 2004, Frascati, Italy Attila Mihalyi University of Wisconsin-Madison.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
CP Violation Reach at Very High Luminosity B Factories Abi Soffer Snowmass 2001 Outline: Ambiguities B  DK B  D*     etc. B  D*  a 0   etc. (“designer.
A. BondarModel-independent φ 3 measurement August 6, 2007Charm 2007, Cornell University1/15 γ/φ 3 model-independent Dalitz analysis (Dalitz+CP tagged Dalitz.
Aug 6, Charm γ/φ 3 Impact from CLEO-c Using CP-Tagged D→K S,L ππ Decays Eric White - University of Illinois Qing He - University of Rochester for.
Recent Charm Results From CLEO Searches for D 0 -D 0 mixing D 0 -> K 0 s  +  - D 0 ->K *+ l - Conclusions Alex Smith University of Minnesota.
Beauty 06, Oxford, 27 Sept Marco Zito1 Measurements of gamma using ADS, GLW and other methods & future projections Marco Zito CEA-Saclay, Dapnia-SPP.
B  and  2 /  3 results from the B factories May 20, 2006 Sheldon Stone Syracuse Nobu Katayama (KEK)
Φ 3 measurements at B factories Yasuyuki Horii Kobayashi-Maskawa Institute, Nagoya University, Japan Epiphany Conference, Cracow, 9th Jan
DPF 2009 Richard Kass 1 Search for b → u transitions in the decays B → D (*) K - using the ADS method at BaBar Outline of Talk *Introduction/ADS method.
CP Violation and CKM Angles Status and Prospects Klaus Honscheid Ohio State University C2CR 2007.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
CP VIOLATION at B-factories A.Bondar (Budker INP,Novosibirsk) Measurements of large CPV in b  c c s modes Search for New Physics: CPV in b  s penguin.
LHCb status of CKM  from tree-level decays Stefania Ricciardi, STFC Rutherford Appleton Laboratory On behalf of the LHCb Collaboration Stefania Ricciardi,
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
Fernando Martínez-Vidal, On behalf of the BaBar Collaboration Measurements of the CKM angle  at BaBar.
Pavel Krokovny, KEK Measurement of      1 Measurements of  3  Introduction Search for B +  D (*)0 CP K +  3 and r B from B +  D 0 K + Dalitz.
 3 measurements by Belle Pavel Krokovny KEK Introduction Introduction Apparatus Apparatus Method Method Results Results Summary Summary.
CP violation at B-factoris Introduction  1 /   2 /   3 /  Vub, D mixing, Bs Conclusion Pavel Krokovny KEK, Tsukuba, Japan KEK.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
B→DK strategies in LHCb (Part I) Mitesh Patel (CERN) (on behalf of the LHCb Collaboration) 6 th February 2006 FLAVOUR IN THE ERA OF THE LHC.
CP Violation Studies in B 0  D (*)  in B A B A R and BELLE Dominique Boutigny LAPP-CNRS/IN2P3 HEP2003 Europhysics Conference in Aachen, Germany July.
Maria Różańska, INP Kraków HEP2003 Europhysics Conference –Aachen, July 18th 1 CPV in B → D (*) K (*) (and B → D K  ) in BaBar and Belle Outline: CPV.
1 Koji Hara (KEK) For the Belle Collaboration Time Dependent CP Violation in B 0 →  +  - Decays [hep-ex/ ]
F. Martínez-Vidal IFIC – Universitat de València-CSIC (on behalf of the BaBar Collaboration)  from B ±  D (*)0 [K S     ]K (*)±  in BaBar Outline.
Review ADS+GLW P. Krokovny CKM 2006, Nagoya Experimental review of ADS and GLW methods Pavel Krokovny KEK Introduction Introduction Apparatus Apparatus.
Andrzej Bożek for Belle Coll. I NSTITUTE OF N UCLEAR P HYSICS, K RAKOW ICHEP Beijing 2004  3 and sin(2  1 +  3 ) at Belle  3 and sin(2  1 +  3 )
Update on Measurement of the angles and sides of the Unitarity Triangle at BaBar Martin Simard Université de Montréal For the B A B AR Collaboration 12/20/2008.
Prospects for  at LHCb Val Gibson (University of Cambridge) On behalf of the LHCb collaboration Physics at the LHC Split, October 3 rd 2008.
Direct CP violation in D  hh World measurements of In New Physics: CPV up to ~1%; If CPV ~1% were observed, is it NP or hadronic enhancement of SM? Strategy:
Measurements of  at LHCb Mitesh Patel (CERN) (on behalf of the LHCb Collaboration) 14th December 2006.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
Measurements of   Denis Derkach Laboratoire de l’Accélérateur Linéaire – ORSAY CNRS/IN2P3 FPCP-2010 Turin, 25 th May, 2010.
Measurements of  1 /  Flavor Physics and CP Violation 2010, May 25, 2010, Torino, Italy, K. Sumisawa (KEK)
Status and perspectives of measurements of Vub and g
Measurements of gamma & future projections
D0 mixing and charm CP violation
Present status of Charm Measurements
Reaching for  (present and future)
Hadronic B Decays at BELLE and BABAR
Search for b → u transitions in B+ → {Kpp0}DK+
CP VIOLATION (B-factories)
Time-dependent analyses at D0-D0 threshold
γ determination from tree decays (B→DK) with LHCb
Measurements of a and future projections
Max Baak, NIKHEF on behalf of the BABAR and BELLE Collaborations
Search for CP Violating Decays of theU(4S)
Measurements of the UT Angle a from BABAR
Representing the BaBar Collaboration
ВД в эксперименте по измерению масс
Measurements of g and sin(2b+g ) in BaBar
CP violation in the charm and beauty systems at LHCb
Attila Mihalyi University of Wisconsin-Madison
BESIII 粲介子的强子衰变 周晓康 中国科学技术大学 BESIII 粲介(重)子物理研讨会.
B  at B-factories Guglielmo De Nardo Universita’ and INFN Napoli
Charmless Quasi-two-Body Modes at BaBar
D0 Mixing and CP Violation from Belle
How charm data may help for φ3 measurement at B-factories
Y. Horii (Nagoya) and K. Trabelsi (KEK)
Exclusive Semileptonic B Decays and |Vub|: Experimental
γ/φ3 determination with B D0(*)K(*) Dalitz analysis
Measuring γ at LHCb with Dalitz Methods and Global Sensitivity
The Measurement of sin2β(eff) in Loop-Dominated B Decays with BABAR
Search for Direct CP Violation in 3-body Cabibbo-suppressed D0 Decays
B DK strategies in LHCb (part II)
Search for D0D0 Mixing at BESIII
Study of the suppressed decay B-DK- and B-D(*)CPK- decays at Belle
Measurement of f3 using Dalitz plot analysis of B+ D(*)K(*)+ by Belle
Measurements of sin(2b + g) / sin(2f1 + f3)
Presentation transcript:

f3 measurements by Belle Pavel Krokovny KEK Introduction Apparatus Method Results Summary

Unitarity Triangle Using unitarity requirement: φ1 is measured with a high accuracy (~1º) at B-factories. φ3 is the most challenging angle to measure. Measurement of all the angles needed to test SM.

Constraints of the Unitarity Triangle World average as of summer 2005 from GLW, ADS, Dalitz and sin(2φ1+φ3): γ/φ3=70 -14° +12

KEKB and Belle KEKB Collider L= 1.65 x 1034 cm–2s–1 (world record) 3.5 GeV e+ & 8 GeV e– beams 3 km circumference, 11 mrad crossing angle L= 1.65 x 1034 cm–2s–1 (world record) L dt = 630 fb–1 @ Υ(4S)+off(~10%)

B+ D0K+ decay B– D0K–: B– D0K– : Need to use the decay where Vub contribution interferes with another weak vertex. B– D0K–: B– D0K– : If D0 and D0 decay into the same final state, Relative phase: (B– DK–), (B+ DK+) includes weak (γ/φ3) and strong (δ) phase. Amplitude ratio:

GLW method  A1,2 of different signs M. Gronau and D. London, PLB 253, 483 (1991); M. Gronau and D. Wyler, PLB 265, 172 (1991) СР eigenstate of D-meson is used (DCP). CP-even : D1 K+K–, π+ π – CP-odd : D2  KS π0, KS ω, KS φ, KSη… СР-asymmetry: for D1  A1,2 of different signs for D2 Additional constraint: 4 equations (3 independent: ), 3 unknowns

GLW method B D1K B D2K B D*1K B D*2K Belle results (253 fb-1) Phys. Rev. D 73, 051106(R) (2006) B± DK± B D1K 1.13 ±0.16±0.05 0.06±0.14±0.05 B D2K 1.17±0.14±0.14 -0.12±0.14±0.05 B+ D1K+ B- D1K- B± D*K± B D*1K 1.41±0.25±0.06 -0.20±0.22±0.04 B D*2K 1.15±0.31±0.12 0.13±0.30±0.08 B+ D2K+ B- D2K- GLW analyses alone do not constrain γ/φ3 significantly yet, but can be combined with other measurements and provide information on rB

ADS method  B–D0K– - color allowed B–D0K– - color suppressed D. Atwood, I. Dunietz and A. Soni, PRL 78, 3357 (1997); PRD 63, 036005 (2001) Enhancement of СР-violation due to use of Cabibbo-suppressed D decays B–D0K– - color allowed D0K+π– - doubly Cabibbo-suppressed B–D0K– - color suppressed D0K+π– - Cabibbo-allowed  Interfering amplitudes are comparable

ADS method rB<0.18 (90% CL) Belle results (357 fb-1) hep-ex/0508048 Suppressed channel not visible yet: Using rD=0.060±0.003, for maximum mixing (φ3=0, δ=180°): rB<0.18 (90% CL)

Dalitz analysis method A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003) A. Bondar, Proc. of Belle Dalitz analysis meeting, 24-26 Sep 2002. Using 3-body final state, identical for D0 and D0: Ksπ+π-. Dalitz distribution density: (assuming СР-conservation in D0 decays) If is known, parameters are obtained from the fit to Dalitz distributions of D Ksπ+π– from B±DK± decays

Dalitz analysis: D0  Ksπ+π– Statistical sensitivity of the method depends on the properties of the 3-body decay involved. (For |M|2=Const there is no sensitivity to the phase θ) Large variations of D0 decay strong phase are essential Use the model-dependent fit to experimental data from flavor-tagged D* D0π sample. Model is described by the set of two-body amplitudes + nonresonant term. As a result, model uncertainty in the γ/φ3 measurement.

D0  Ksπ+π– Decay Model D*->D0π->[KSπ+π-]π Doubly Cabibbo M (GeV 2 ) Ksπ – 2 Doubly Cabibbo Suppressed K* ρ-ω interference

Dalitz analysis: sensitivity to f3

Dalitz analysis Phys. Rev. D 73, 112009 (2006) Fit parameters are x= r cos(φ3+δ) and y= r sin(φ3+δ) (better behaved statistically than ) are obtained from frequentist statistical treatment based on PDFs from toy MC simulation. BDK BD*K BDK* x–= 0.025-0.080 y–= 0.170-0.117 x+= –0.135-0.070 y+= –0.085-0.086 +0.072 x-= –0.128-0.146 y-= –0.339-0.158 x+= 0.032-0.116 y+= 0.008-0.136 x–= –0.784-0.295 y–= –0.281-0.335 x+= –0.105-0.167 y+= –0.004-0.156 +0.167 +0.249 +0.093 +0.172 +0.440 +0.069 +0.120 +0.177 +0.090 +0.137 +0.164

Dalitz analysis Belle result (357 fb-1) 331±17 events 81±8 events Phys. Rev. D 73, 112009 (2006) BD*K BDK* BDK 331±17 events 81±8 events 54±8 events B- B+ B- B+ B- B+

Dalitz analysis φ3=66-20 °(stat) φ3=86-93°(stat) φ3=11-57°(stat) +19 Phys. Rev. D 73, 112009 (2006) BDK BDK* BD*K φ3=66-20 °(stat) φ3=86-93°(stat) φ3=11-57°(stat) +19 +37 +23 Combined for 3 modes: φ3=53°+15 3° (syst)9° (model) 8°<φ3<111° (2σ interval) rDK =0.159+0.054 0.012(syst)0.049(model) CPV significance: 74% rD*K=0.175+0.108 0.013(syst)0.049(model) rDK*=0.564+0.216 0.041(syst)0.084(model) -18 -0.050 -0.099 -0.155

sin(2φ1+φ3) from B0 D*π decay Use B flavor tag, measure time-dependent decay rates: Btag  B0 B  D-+ Btag  B0 where CP violation

sin(2φ1+φ3) - full reconstruction with - partial reconstruction Belle result (357 fb-1) Phys. Rev. D 73, 092003 (2006) - full reconstruction with - partial reconstruction (reconstruct only pions) D*π partial rec D*π full rec

sin(2φ1+φ3) S +(D*π)=0.049±0.020±0.011 S –(D*π)=0.031±0.019±0.011 Phys. Rev. D 73, 092003 (2006) S +(D*π)=0.049±0.020±0.011 S –(D*π)=0.031±0.019±0.011 S +(Dπ)=0.031±0.030±0.012 S –(Dπ)=0.068±0.029±0.012 Full-rec + partial-rec Full-rec CP violation significance: 2.5σ If R~0.02: |sin(2φ1+φ3)|>0.46 (0.13) |sin(2φ1+φ3)|>0.48 (0.07) at 68% (95%) CL

Summary The angle φ3/g remains the most difficult angle of the Unitarity Triangle to measure, although there is a tremendous progress from B-factories. O(20º) Precision in direct measurements of φ3 is achieved using new GGSZ method (B->D0[KSππ]K) Other methods do not constrain γ/φ3 significantly yet, but can be used in combined fit and provide information on rB The precision is statistically limited  good perspectives for improving the result with larger data set

Backup

B± DK±, DKSπ+π– Dalitz plots K*(892) bands D0 from B- D0K- (π+ and π - interchanged) D0 from B+ D0K+

Control sample Same fit procedure was applied for the control sample: B  D(*) p The results are consistent with r=0.01 for D(*)0 and with 0 for D*- p+

Systematic errors Background shape: baseline – BB MC + continuum data sample, variations – continuum only, MBC sidebands. Efficiency over Dalitz plot: main fit – MC, variation – use high momentum D*[D p] DE – MBC shape: vary shape parameters by 1 s DE – MBC for BB and qq: use different shape for qq and BB

D0  Ksπ+π– decay model Intermediate state Amplitude Phase, ° Fit fraction KS σ1 (M=520±15 MeV, Γ=466±31 MeV) KS ρ(770) KS ω KS f0(980) KS σ2 (M=1059±6 MeV, Γ=59±10 MeV) KS f2(1270) KS f0(1370) KS ρ(1450) K* (892)+π– K*(892)–π+ K*(1410)+π– K*(1410)–π+ K*0(1430)+π– K*0(1430)–π+ K*2(1430)+π– K*2(1430)–π+ K*(1680)+π– K*(1680)–π+ Nonresonant 1.43±0.07 1 (fixed) 0.0314±0.0008 0.365±0.006 0.23±0.02 1.32±0.04 1.44±0.10 0.66±0.07 1.644±0.010 0.144±0.004 0.61±0.06 0.45±0.04 2.15±0.04 0.47±0.04 0.88±0.03 0.25±0.02 1.39±0.27 1.2±0.2 3.0±0.3 212±4 0 (fixed) 110.8±1.6 201.9±1.9 237±11 348±2 82±6 9±8 132.1±0.5 320.3±1.5 113±4 254±5 353.6±1.2 88±4 318.7±1.9 265±6 103±12 118±11 164±5 9.8% 21.6% 0.4% 4.9% 0.6% 1.5% 1.1% 61.2% 0.55% 0.05% 0.14% 7.4% 0.43% 2.2% 0.09% 0.36% 0.11% 9.7%

Model-independent approach D0 decay amplitude: D0-D0 interference from B+ D0K+: is measured directly, is model-dependent If CP-tagged D0 are available (e.g. from ψ’’ D0 D0 , where tag-side D0 decays into CP-eigenstate) phase difference can be measured:

Model-independent Approach A.Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003) A.Bondar, A.Poluektov hep-ph/0510246 50 ab-1 at SuperB factory should be enough for model-independent γ/φ3 Measurement with accuracy below 2° ~10 fb-1 at ψ(3770) needed to accompany this measurement.

Dalitz analysis: sensitivity to f3

Constraints to rB