ISIS and SPiDeR Zhige ZHANG STFC Rutherford Appleton Laboratory.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Toolkit for testing CCD cameras
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
TDC130: High performance Time to Digital Converter in 130 nm
Konstantin Stefanov, Rutherford Appleton Laboratory4 th ECFA-DESY Workshop, 1-4 April 2003p. 1 CCD-based Vertex Detector - LCFI status report Konstantin.
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Status Report: Sensors for the ILC Konstantin Stefanov CCLRC Rutherford Appleton Laboratory.
The Status of the LCFI Project Snowmass 2005 Joel Goldstein CCLRC Rutherford Appleton Laboratory For the LCFI Collaboration.
Latest Developments from the CCD Front End LCWS 2005 Stanford Joel Goldstein, RAL for the LCFI Collaboration.
J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
Konstantin Stefanov, Rutherford Appleton Laboratory UTA LC Workshop, 8 Jan Report from the LCFI collaboration Konstantin Stefanov RAL Introduction:
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 26 September 2006 LCFI Status Report: Vertex Detector R&D Konstantin Stefanov CCLRC Rutherford.
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
LCFI Collaboration Status Report LCWS 2004 Paris Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, RAL.
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch9. Memory Devices.
ABC Technology Project
1..
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
Week 1.
We will resume in: 25 Minutes.
Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main.
SPIDER Silicon Pixel Detector R&D  Birmingham University (N. Watson, J. Wilson, R. Staley), Bristol University (J. Goldstein, D. Cussans, R. Head, S.
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory PPRP open session: LCFI, IoP, 8 th September Linear Collider Flavour Identification (LCFI)
A new idea of the vertex detector for ILC Y. Sugimoto Nov
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
PASI 2013, 3 rd – 5 th April 2013, RAL 03-Apr-2013Fergus Wilson, STFC/RAL1 UK Silicon Digital Calorimetry.
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
Fine Pixel CCD Option for the ILC Vertex Detector
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Vertex Detector for GLD 3 Mar Y. Sugimoto KEK.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia LCFI Status Report: Vertex Detector R&D Konstantin Stefanov CCLRC Rutherford.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
J. Crooks STFC Rutherford Appleton Laboratory
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Detector R&D Status Report WP2 – Sensor Development WP3 – Readout and Drive Electronics.
Advanced Pixel Architectures for Scientific Image Sensors Rebecca Coath, Jamie Crooks, Adam Godbeer, Matthew Wilson, Renato Turchetta CMOS Sensor Design.
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
1 Konstantin Stefanov, STFC Rutherford Appleton Laboratory 1 TILC08, Sendai, Japan A CCD Based Vertex Detector Konstantin Stefanov STFC Rutherford Appleton.
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
Scott Mandry, EUDET JRA1 Meeting, DESY 30 th January ISIS1 Testbeam EUDET JRA1 Meeting, DESY 30 th January 2008 Scott Mandry LCFI Collaboration.
1 Konstantin Stefanov, Rutherford Appleton Laboratory 1 LCWS2007 Progress with the CPCCD and the ISIS Konstantin Stefanov Rutherford Appleton Laboratory.
1 Konstantin Stefanov, STFC Rutherford Appleton Laboratory 1 Vertex 2007, Lake Placid A CCD Based Vertex Detector Konstantin Stefanov STFC Rutherford Appleton.
CMOS pixels with Charge Storage : ISIS2
Presented by Renato Turchetta CCLRC - RAL 7 th International Conference on Position Sensitive Detectors – PSD7 Liverpool (UK), September 2005 R&D.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford for LCFI collaboration LCWS2008, 17 November 2008 Column Parallel CCD and Raw Charge Storage.
Advanced Monolithic Active Pixel Sensors with full CMOS capability for tracking, vertexing and calorimetry Marcel Stanitzki STFC-Rutherford Appleton Laboratory.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
Nonvolatile memories:
LCFI Detector Overview
for the SPiDeR collaboration (slides from M. Stanitski, Pixel2010)
First Testbeam results
LCFI Status Report: Sensors for the ILC
Silicon Pixel Tracker for the ILC
Presentation transcript:

ISIS and SPiDeR Zhige ZHANG STFC Rutherford Appleton Laboratory

Content ISIS Concept –ISIS1 ISIS2 –Design –test structure –ISIS2 So far SPiDeR –Project –Sensors Z Zhang Vertex 2009 Putten 2

ISIS Concept In-situ Storage Image Sensor Parallel sampling for all the pixels Store the raw charge locally ( next to the pixels) Read out later Fast frame rate but limited number of frames Burst events such as ILC bunch train Z Zhang Vertex 2009 Putten 3

Image sensor ISIS has been used in image sensor for high speed camera –Frames rate: 10 6 Frames/Second –Sensor size: 312x260 –Frames storage: 103 frames ETOH et al. IEEETRANS ELECTRON DEVICES, 50, (2003) pp Z Zhang Vertex 2009 Putten 4

ISIS1 Test of concept –16 X 16 image pixels –5 storage cells –CCD process –Pixel size 160 X 40 µm Z Zhang Vertex 2009 Putten 5 p+ shielding implant n+ buried channel (n) Charge collection reflected charge High resistivity epitaxial layer (p) Sense node (n+) row select reset gate V DD Photogate transfer gate Output gate to column load Storage cell #1 - 5 substrate (p++) Isolation gate

ISIS1 Z Zhang Vertex 2009 Putten 6 Zhang et al Nucl. Instr. and Meth. A 607 (2009) pp Deep p-well charge shielding on storage pixels Ratio of x-ray events on photo gate and storage cells –(a) without –(b) with (GV = 4V) –(c) with (GV = 8V) Deep p-well works

ISIS2 Second generation of ISIS Miniature design 20X20 µm 2 pixel size: 0.18 µm CMOS process non–overlapping gates Deep p-well for charge shielding Z Zhang Vertex 2009 Putten 7

ISIS2 Cross Section Z Zhang Vertex 2009 Putten 8 p+ shielding implant Charge injector buried channel (n) Charge collection p+ well reflected charge High resistivity epitaxial layer (p) Storage pixel #1-20 Sense node (n+) Row select Reset gate Source follower V DD Photo gate Reset transistor Row select transistor Output gate Output substrate (p+) Summing gate

ISIS2 Test structure –Small version of one pixel –Photo, Summing and Output gate –Readout electronics Allows test of basic functionality –Charge transfer –Readout –Fringe effect Z Zhang Vertex 2009 Putten 9 IDR IG PG SG OG RG RD OD RSEL M0 OS SS ISIS2 test structure

ISIS2 Low noise on readout electronics –Measure the x-ray events on the output node –5.5 e - (STD) with CDS (800ns) –Clear 55 Fe K peak –1620/145 = e - /ADC –24 µV/e - Z Zhang Vertex 2009 Putten Fe K

ISIS2 High resistance on the gate Examined by connecting test structure as a big transistor 100 Hz applied to gate yellow line Green line is the output However the test structure can be controlled by slow clocking Z Zhang Vertex 2009 Putten 11

Charge capacity Z Zhang Vertex 2009 Putten 12 Pixel size 1X5 µm Gate voltage = 3.5V Charge capacity inside linear part –~ C –~ C –~ C –Close to the design

ISIS2 Dark Current Dark current collected under the 1x5 µm 2 Temperature range -10 to 20 C Unit: e- / ms Isolated pixel only A guidance for the testing Z Zhang Vertex 2009 Putten 13

ISIS2 Fringe Effect Potential under the output gate is pulled up by output node(5V) Charge leaked to output node directly from photo gate -0.2 V is the best setting for this device Several ways to modify the design Z Zhang Vertex 2009 Putten 14

ISIS2 main array Z Zhang Vertex 2009 Putten 15 One pixel Whole sensor 20 storage cells buried channel CCD Pixel size 80x10/20x40 µm 2 Storage cell charge capacity > 6ke - 256x32 pixels

ISIS2 55 Fe events on main array Beginning of the study on main array Challenges –Slow clocking –Dark current –Charge transfer Z Zhang Vertex 2009 Putten 16 Y Li Oxford

SPiDeR Silicon Pixel Detector R&D Continue and extend the sensor development in previous projects (CALICE and LCFI) –Goal: further develop monolithic silicon active pixel detectors Vertexing, tracking and electromagnetic calorimetry The sensors include –TPAC (CALICE) –CHERWELL ISIS (LCFI) (Charge Coupled CMOS) FORTIS –a demonstrator device for 4T (pinned photodiode) technology Digital Calorimeter test stack Z Zhang Vertex 2009 Putten 17

TPAC Z Zhang Vertex 2009 Putten 18 Tera-Pixel Active Calorimeter, it has per-pixel peramp, thresholding and timestamp capability

TPAC stack behind testbeam CERN Aug 19 Z Zhang Vertex 2009 Putten

FORTIS in testbeam testbeam CERN Aug, Fortis sanwiched between elements of the EUDET Si telescope Z Zhang Vertex 2009 Putten 20

Hits on FORTIS testbeam CERN Aug 21 Z Zhang Vertex 2009 Putten

22 Thanks