The Toffoli gate & Error Correction

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

AP STUDY SESSION 2.
1
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2003 Chapter 3 Data Transmission.
Chapter 1 The Study of Body Function Image PowerPoint
Sequential Logic Design
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
David Burdett May 11, 2004 Package Binding for WS CDL.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
The 5S numbers game..
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
1 The Blue Café by Chris Rea My world is miles of endless roads.
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Discrete Mathematical Structures: Theory and Applications
Three-qubit quantum error correction with superconducting circuits
Bellwork Do the following problem on a ½ sheet of paper and turn in.
2 |SharePoint Saturday New York City
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Approximate quantum error correction for correlated noise Avraham Ben-Aroya Amnon Ta-Shma Tel-Aviv University 1.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
Subtraction: Adding UP
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
Datorteknik IntegerAddSub bild 1 Integer arithmetic Depends what you mean by "integer" Assume at 3-bit string. –Then we define zero = 000 one = 001 Use.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
( ( ) quantum bits conventional bit
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Matt Reed Yale University Boston, MA - February 28, 2012
Presentation transcript:

The Toffoli gate & Error Correction Sophie Chauvin and Roman Patscheider

Topics Toffoli gate Quantum Error Correction As a circuit element A physical implementation Quantum Error Correction Bit-flip error correction Phase-flip error correction

Introduction Presence of noise requires error correction General idea: Toffoli gate for information recovery Add redundant information Information to be preserved Noise Recover original information Shortly explain classical „majority vote“: 0->000, 1->111 if one bit flipped: 000->100 majority wins ->0 For qubits: 3-qubit entangled state -> Information recovery using 3 qubit gate

The Toffoli gate As a circuit element

Toffoli gate or CCNOT gate |000> |001> |010> |011> |100> |101> |110> |111> |000> |001> |010> |011> |100> |101> |111> |110> 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 Circuit Symbol Truth Table Matrix Representation

CCPhase to CCNOT H is equivalent to As seen in the excercise class last week: transforming |0> / |1> into |+> / |-> thus CCPhase flips states and after transforming back, the target is flipped

A physical implementation The Toffoli gate A physical implementation

A superconducting circuit Microwave transmission line resonator 3 transmon qubits Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Resonator features Bare resonator frequency: νr = 8.625 GHz Quality factor: Q = 3300 Transmission (dB) Frequency Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Qubit features Some numerical values: ng Some numerical values: Maximum transition frequencies: νA,B,C = {6.714, 6.050, 4.999} GHz Charging energies: EC/h = {0.264, 0.296, 0.307} GHz Coupling strengths: g/2π = {0.36, 0.30, 0.34} GHz Energy relaxation time: T1 = {0.55, 0.70, 1.10} μs Phase coherence time: T2*= {0.45, 0.6, 0.65} μs Use states ⎢0〉, ⎢1〉 (computational states) and ⎢2〉 anharmonicity Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Simplification of Toffoli gate Using quantum levels ⎢0〉 and ⎢1〉: 6 CNOT gates and several single qubit operations Using quantum levels ⎢0〉, ⎢1〉 and ⎢2〉: half duration of precedent schemes Trick: hide qubit in the 3rd level

Circuit diagram Aim: achieving ⎢001〉 → - ⎢001〉 Red: « hide » the third qubit in non-computational state (π-SWAP and 3π-SWAP) Green: single qubit rotations Blue: CPHASE gate Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Circuit diagram Aim: achieving ⎢001〉 → - ⎢001〉 Initial state After π-SWAP After CPHASE After 3π-SWAP ⎜011〉 - ⎜011〉 ⎜110〉 ⎜111〉 i ⎜200〉 i ⎜201〉 ⎜x0y〉 ⎜010〉 Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Rotating single qubits Apply microwave pulses Frequency controled by flux pulses through the SQUID loop (few nanoseconds long)

Coupling Qubits Transmission line resonator used as quantum bus Microwave pulses

The SWAP gates Qutrit tuned non-adiabatically ⎜20x〉or ⎜x20〉 ν ⎜11x〉or ⎜x11〉 Φ/Φ0 Qutrit tuned non-adiabatically Evolution: U ⎟11x〉 = cos(Jt) ⎟11x〉 – i sin(Jt) ⎟20x〉 Choose t such as to perform π, 2π and 3π gates Interaction times: t = { π, 2π, 3π } / 2J11,20 = { 7, 23, 20 } ns

The whole pulse sequence Flux pulses Microwave pulses Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Performance Evaluation The Toffoli gate Performance Evaluation

Fidelity and total gate time Fidelity of the measured truth table: F=(1/8)TR[UexpT Uideal]=76% Total gate time: 90 ns Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Full Process Tomography Include non classical features of the Toffoli gate F=Tr[χexpt χideal] =69% Apply 64 distinct Input states and perform a state tomography on output states. On the right: ideal process matrix On the left: measured process matrix Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011)

Quantum error correction

About quantum error correction codes Classical idea: make the input signal redundant Detect an error without measuring the actual state correct witout destroying coherence Correct errors on ONE qubit only

Quantum Error Correction Bit-flip Correction

Bit flip correction Correct errors of type σX |Ψ〉 (σX Pauli operator) Bit-flip errors 1 3 2 4 |0> |Ψ> Initial state: Qubit 1: |0〉 Qubit 2: α|0〉 + β|1〉 Qubit 3: |0〉 3-qubit-state: α|000〉 + β|010〉 Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Bit flip correction Correct errors of type σX |Ψ〉 (σX Pauli operator) Bit-flip errors 1 3 2 4 |0> |Ψ> Entanglement: α |000> + β |111> Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Bit flip correction Correct errors of type σX |Ψ〉 (σX Pauli operator) Bit-flip errors 1 3 2 4 |0> |Ψ> Bit flip with probability p: Diven by rotation angle θ introduced by y-rotation (p=sin2(θ/2)) Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Bit flip correction Correct errors of type σX |Ψ〉 (σX Pauli operator) Bit-flip errors 1 3 2 4 |0> |Ψ> Reverse process: « desantanglement » α|000〉 + β|010〉 If no error occured! Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Bit flip correction Correct errors of type σX |Ψ〉 (σX Pauli operator) Bit-flip errors 1 3 2 4 |0> |Ψ> Toffoli gate: Correction if and only if the two ancilla qubits are in an excited state Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Quantum Error Correction Phase-flip Correction

Phase Errors Phase errors are errors of the form Z |ψ> (Z is Pauli operator) Errors with probability p are modeled by Z-gates with known rotation angle θ with p=sin2(θ/2) Projecting the systems state onto the possible error syndromes causes the system to „decide“ if a full phase flip error occured or not

Phase Error Correction Circuit Phase errors 1 4 3 2 5 |0> |Ψ> 6 Initial state: Qubit 1: |0> Qubit 2: α|0> + β|1> Qubit 3: |0> 3-qubit-state: α|000> + β|010> Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Phase Error Correction Circuit Phase errors 1 4 3 2 5 |0> |Ψ> 6 After two CNOT operations: α |000> + β |111> Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Phase Error Correction Circuit Phase errors 1 4 3 2 5 |0> |Ψ> 6 Changing the basis to |+>=1/sqrt(2)(|0>+|1>) |–>=1/sqrt(2)(|0>–|1>) results in: α |+ + +> + β |– – –> Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Phase Error Correction Circuit Phase errors 1 4 3 2 5 |0> |Ψ> 6 If a relative phase error of π is inserted on the second qubit, the 3-qubit-state gets: α |+ – +> + β |– + –> And after returning to the original basis: α |010> + β |101> Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Phase Error Correction Circuit Phase errors 1 4 3 2 5 |0> |Ψ> 6 Again after two CNOT operations: α |111> + β |101> Applying a CCNOT operation on the second qubit results in: α |101> + β |111> Thus the ancilla qubits are now both |1> and the second qubit is in its original state |Ψ>= α|0> + β|1> Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Process Fidelity f=(0.76±0.005) – (1.46±0.03)p2 + (0.72±0.03)p3 Implemented by Reed et al. in Superconducting circuits. Z gates with known rotation applied on all 3 qubits -> every qubit has probability p to have the phase flipped. -> probability of more than one flip:3*(1-p)*p^2+p^3= 3p^2-2p^3 ->fidelity ideally: 1-3p^2+2p^3 Due to limited gate fidelity: smaller coefficients Since the code corrects only single qubit errors, it will fail, for two or more errors. -> linear dependence on p suppressed! Reed, M. D; DiCarlo, L.; Nigg, S. E; et al.; Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

What to remember Codes to detect and correct errors without destroying coherence Implemented in superconductor circuits, using Toffoli gate Use an interaction with the third excited state

Sources Fedorov, A.; Steffen, L.; Baur, M.; Wallraff A. Implementation of a Toffoli Gate with Superconducting Circuits arXiv:1108.3966 (2011) Reed, M. D; DiCarlo, L.; Nigg, S. E; et al. Realization of Three-Qubit Quantum Error Correction with Superconducting Circuits arXiv:1109.4948 (2011)

Outlook Shor code: protects against arbitrary error on a single qubit To be presented by Dezeure Ruben & Schneider Manuel on Dec 19