Prof. Virginia Ayres Electrical & Computer Engineering

Slides:



Advertisements
Similar presentations
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
Advertisements

ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
An Introduction to Graphene Electronic Structure
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
Introduction to the Tightbinding (LCAO) Method. Tightbinding: 1 Dimensional Model #1 Consider an Infinite Linear Chain of identical atoms, with 1 s-orbital.
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
SWBAT: Draw sp hybrid bonding orbitals for carbon
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
Michael S. Fuhrer University of Maryland Graphene: Scratching the Surface Michael S. Fuhrer Professor, Department of Physics and Director, Center for Nanophysics.
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE : Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
ECE 875: Electronic Devices
ECE 875: Electronic Devices
Read: Chapter 2 (Section 2.2)
Introduction to the Tightbinding (LCAO) Method
Chemical Bonding Metallic Bonding.
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 875: Electronic Devices
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 874: Physical Electronics
Prof. Virginia Ayres Electrical & Computer Engineering
ECE 874: Physical Electronics
Prof. Virginia Ayres Electrical & Computer Engineering
ECE 874: Physical Electronics
ECE 874: Physical Electronics
Prof. Virginia Ayres Electrical & Computer Engineering
Prof. Virginia Ayres Electrical & Computer Engineering
ECE 875: Electronic Devices
ECE 875: Electronic Devices
ECE 874: Physical Electronics
ECE 874: Physical Electronics
Introduction to the Tightbinding (LCAO) Method
ECE 875: Electronic Devices
Prof. Virginia Ayres Electrical & Computer Engineering
ECE 875: Electronic Devices
ECE 875: Electronic Devices
ECE 875: Electronic Devices
Prof. Virginia Ayres Electrical & Computer Engineering
ECE 874: Physical Electronics
ECE 874: Physical Electronics
ECE 875: Electronic Devices
ECE 875: Electronic Devices
ECE 874: Physical Electronics
ECE 875: Electronic Devices
PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103
ECE 875: Electronic Devices
Presentation transcript:

ECE 802-604: Nanoelectronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu

Lecture 21, 07 Nov 13 Carbon Nanotubes and Graphene CNT/Graphene electronic properties sp2: electronic structure Find E-k relationship/graph for polyacetylene Find E-k relationship/graph for graphene R. Saito, G. Dresselhaus and M.S. Dresselhaus Physical Properties of Carbon Nanotubes VM Ayres, ECE802-604, F13

Goal: polyacetylene: VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

l VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

All Structure: s-bonds Electronic: p-bonds Lec 20: Division of structural and electronic properties in sp2: This is for graphene but it shows you the valence and conduction energy states from both ss and ps All Structure: s-bonds Electronic: p-bonds VM Ayres, ECE802-604, F13

All Structure: s-bonds Electronic: p-bonds Lec 20: Division of structural and electronic properties in sp2: All Structure: s-bonds p valence and conduction energy levels for polyacetylene Electronic: p-bonds VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

-1 VM Ayres, ECE802-604, F13

Will come back to this step VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

Plot E+ and E- versus k. What is the range of k? Symmetric: VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

Can graph this way if you acknowledge that you have two inequivalent carbons: go up using a1 to get to “A” types and down by a2 to get to “B” types a H H H “A” c c c c c “B” H H VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

TYPO CORRECT: VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

Back to this step Transfer matrix Overlap matrix VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

Quick review of what the F are: Bloch wavefunctions: “a” here is the distance between identical situations. VM Ayres, ECE802-604, F13

“a” here is the distance between identical situations. From previous slide 30, for polyacetylene: “a” is the size of our Unit cell. VM Ayres, ECE802-604, F13

Because: polyacetylene has inequivalent C atoms VM Ayres, ECE802-604, F13

a H H H “A” c c c c c “B” More simply: where is C-atom “B” relative to C-atom “A”? H H VM Ayres, ECE802-604, F13

a H H H “A” c c c c c “B” Question: where is C-atom “B” relative to C-atom “A”? Answer: +a/2 H H VM Ayres, ECE802-604, F13

a H H H “A” c c c c c “B” Where are the nearest neighbor C-atoms “B” relative to “A”? H H VM Ayres, ECE802-604, F13

a H H H “A” c c c c c “B” Where are the nearest neighbor C-atoms “B” relative to “A”? Answer: +a/2 and –a/2 H H VM Ayres, ECE802-604, F13

Where are the nearest neighbor “A” to “A” C-atoms? VM Ayres, ECE802-604, F13

This is the summation from “A” to all “A” type carbon atoms: Where are the nearest neighbor “A” to “A” C-atoms? Answer: +a and -a This is the summation from “A” to all “A” type carbon atoms: a a H H H H “A” c c c c c c c “B” H H H -a +a VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

✔ ✔ VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

VM Ayres, ECE802-604, F13

✔ ✔ ✔ ✔ ✔ ✔ VM Ayres, ECE802-604, F13

Need to model the wavefunctions: |2px> Model |p> orbital ECE 802-604: Use this result, p.24: t = -1.0 s = +0.2 e2p = 0.0 VM Ayres, ECE802-604, F13

1 Find Unit cell “a” 2 Find k: 3 Find H and S elements 4 Rules for finding the electronic structure (p. 21): 1 Find Unit cell “a” 2 Find k: 3 Find H and S elements Det [H – SI] =0 4 Solve for E(k) VM Ayres, ECE802-604, F13