Production and Storage of Polarized H2, D2 and HD Molecules

Slides:



Advertisements
Similar presentations
The Hadron Physics Program at COSY-ANKE: selected results
Advertisements

Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
A proposal for a polarized 3 He ++ ion source with the EBIS ionizer for RHIC. A.Zelenski, J,Alessi, E.Beebe, A.Pikin BNL M.Farkhondeh, W.Franklin, A. Kocoloski,
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
2. Our favourite star The Sun photographed in soft X-rays.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
Power of the Sun. Conditions at the Sun’s core are extreme –temperature is 15.6 million Kelvin –pressure is 250 billion atmospheres The Sun’s energy out.
Mitglied der Helmholtz-Gemeinschaft DSMC simulations of polarized atomic beam sources including magnetic fields September 13, 2013 | Martin Gaisser, Alexander.
Spin physics at Storage Rings
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
By Ahmad Idris Ahmad. ◦. I believe that cheap clean source of energy can be harnessed through nuclear fusion if the conditions of the reactions are mastered.
Measuring DR cross sections Absolute recombination rate coefficients of tungsten ions from storage-ring experiments Stefan.
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Mitglied der Helmholtz-Gemeinschaft Polarized Fusion by Giuseppe Ciullo INFN and University of Ferrara for Ralf Engels JCHP / Institut für Kernphysik,
1 Measurement of tensor analyzing powers in deuteron photodisintegration Dmitri Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia SPIN2004,
Elena Long Joint Hall A/C Collaboration Meeting Jefferson Lab June 6 th, /06/2014Joint Hall A/C Collaboration MeetingElena Long.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
The tensor analysing power component T 21 of the exclusive π - - meson photoproduction on deuteron in the resonance region. V.N.Stibunov 1, L.M. Barkov.
Indiana University Cyclotron Facility March, 2004 EIC WorkshopV.P.Derenchuk 1 Polarized Ion Sources V.Derenchuk, Ya.Derbenev, V.Dudnikov Second Electron-Ion.
Size and Structure Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School III.
Nucleon Form Factors and the BLAST Experiment at MIT-Bates
Status of the Source of Polarized Ions project for the JINR accelerator complex (June 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev.
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
TENSOR POLARIZED DEUTERON BEAM AT THE NUCLOTRON Yu.K.Pilipenko, V.P.Ershov, V.V.Fimushkin, A.Yu.Isupov, L.V.Kutuzova, V.P.Ladigin, N.M.Piskunov, V.P.Vadeev,
Extra Physics with an Atomic Beam Source and a Lamb-Shift Polarimeter
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE-Collaboration Institut für Kernphysik, Forschungszentrum.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
P. Kravtsov Petersburg Nuclear Physics Institute DOUBLE POLARIZED DD-FUSION P. Kravtsov, N. Chernov, K. Grigoryev, I. Ivanov, E. Komarov,
The Lineage of Nuclear Polarization Instrumentation Often Leads Through Madison Thomas B. Clegg University of North Carolina at Chapel Hill and Triangle.
The Polarized Internal Gas Target of ANKE at COSY
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Institute for Nuclear Physics Ralf Gebel – PSTP 2007 – September 2007 Facility overview Ion sources at COSY R&D details.
FRIB-China/CUSTIPEN Fundamental Interactions - Experiment Results of Parallel Working Group
Relativistic Momentum p  mu/[(1 – (u/c) 2 ] 1/2 =  mu   1     
MLZ is a cooperation between: Irradiation Effects on Solid Deuterium Stephan Wlokka.
10/10/2008 Mitglied der Helmholtz-Gemeinschaft First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE collaboration.
Precision Tests of Fundamental Interactions with Ion Trap Experiments
We ask for 4 new shifts (to be combined with 2 shifts left for IS386 from 2005) of radioactive beam of 229Ra in order to search for the alpha decay branch.
Ken’ichi Imai Kyoto University
R. Alarcon, APFB 2017, August 25-30, Guilin, China
at diagnostic position
Laser driven sources of H/D for internal gas targets
FEBIAD ion source development efficiency improvement
at Forschungszentrum Jülich
Petersburg Nuclear Physics Institute
Model-Independent Measurement of Excited State Fraction in a MOT
Outside the nucleus, the beta decay {image} will not occur because the neutron and electron have more total mass than the proton. This process can occur.
Nuclear Magnetic Resonance Spectroscopy
New Observations from the Hyperfine Structure of 49,51K
Study of Strange Quark in the Nucleon with Neutrino Scattering
Feasibility Study of the Polarized 6Li ion Source
 .
I. Bocharova L. Cocke, I. Litvinyuk, A. Alnaser, C. Maharjan, D. Ray
Feasibility Study of the Polarized 6Li ion Source
Advantages of Nuclear Fusion
PHY 741 Quantum Mechanics 12-12:50 AM MWF Olin 103
Recent results from BLAST detector
Deuteron Polarimetry at COSY
Presentation transcript:

Production and Storage of Polarized H2, D2 and HD Molecules by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich 10.09.2018 Dr. Ralf Engels 25.06.2009

with momenta up to 3.7 GeV/c PIT@ANKE p, p, d, d with momenta up to 3.7 GeV/c internal experiments – with the circulating beam external experiments – with the extracted beam

PIT @ ANKE/COSY Main parts of a PIT: Atomic Beam Source Target gas hydrogen or deuterium H beam intensity (2 hyperfine states) 8.2 . 1016 atoms / s Beam size at the interaction point σ = 2.85 ± 0.42 mm Polarization for hydrogen atoms PZ = 0.89 ± 0.01 (HFS 1) PZ = -0.96 ± 0.01 (HFS 3) Lamb-Shift Polarimeter Storage Cell M. Mikirtychyants et al.; NIM A 721 (0) 83 (2013) Dr. Ralf Engels 25.06.2009

Pm = ½ Pa Polarized H2 Molecules Pm β= Pa Measurements from NIKHEF, IUCF, HERMES show that recombined molecules retain fraction of initial nuclear polarization of atoms! Pm Pa β= Pm = ½ Pa The HERMES Collaboration; Eur. Phys. J. D 29, 21–26 (2004) DOI: 10.1140/epjd/e2004-00023-5

Pm = 0.5 Pa Polarized H2 Molecules Eley-Rideal Mechanism Is there a way to increase Pm P (surface material, T, B etc)?

Pol. Molecules: The experimental setup ISTC Project # 1861 PNPI, FZJ, Uni. Cologne DFG Project: 436 RUS 113/977/0-1 H2+, D2+ HD+, H3+ p, d

The experimental Setup The Lamb-shift Polarimeter mI = +1/2 N+1/2 – N-1/2 N+1/2 + N-1/2 P= mI = -1/2 R. Engels et al., Rev. Sci. Instr. 74 4607 (2003) R. Engels et al., Rev. Sci. Instr. 85 103505 (2014)

The experimental setup The Lamb-shift Polarimeter H2 H2+ H2+ H2S H2S (α1) H+ H+ H2S H2S (α1) Efficiency ∙ 2 ∙ 0.025 = 5 ∙ 10-12 ∙ 0.2 = 2 ∙ 10-11 See talk by L. Huxold at 10th of September (6 pm, Room A9)  

( ) Pm(B,n) = Pm0 P(B,n) = Pm · e Polarized H2 Molecules Polarization losses of the molecules due to: spin-spin (I↔I) interactions of the nucleons Interaction of the nuclear spins I with the rotational magnetic moment J Interaction with the external magnetic field B … Nuclear Polarization of Hydrogen Molecules from Recombination of Polarized Atoms T.Wise et al., Phys. Rev. Lett. 87, 042701 (2001). n ≈ 1000 Naive Model: P(B,n) = Pm · e - n ( ) 2 Bc B 1 1+(Bc/B)2 ∙ n/ln 2 Pm(B,n) = Pm0 with: Bc = 5.4 mT, n ≡ average amount of wall colissions

Theory

p Experimental results Measurements on Fomblin Oil (Perfluoropolyether PFPE) HFS 3 TCell = 100 K Pm = -0.87 Pm = - 0.81 ± 0.02 n = 174 ± 19 c = 0.993 ± 0.005 p H 2 + Pm = - 0.84 ± 0.02 n = 277 ± 31 R. Engels et al., Phys. Rev. Lett. 115 113007 (2015) Dr. Ralf Engels 25.06.2009

Recombination on Fomblin (?) . . . . Bext . F F F F C - O - C - O - C O --C Fused Quarz Dr. Ralf Engels 25.06.2009

HD Molecules Pz (D) = -0.3 Pzz (D) = 0.12 Pz (H) = -0.21 D H H (Surface: Gold / T = 80 K / B = 0.528 T / E = 2 keV) Pz (D) = -0.3 Pzz (D) = 0.12 Pz (H) = -0.21 H D H

HD Molecules (Surface: Gold / T = 80 K / B = 0.528 T / E = 2 keV) H D H

HD Molecules Signal of the Photomultiplier [a.u.] Surface: Fomblin on Fused Quarz T = 80 K / B = 0.528 T / E = 0.3 keV Pz (H) = - 0.77 Pz (D) = - 0.79 Pzz (D) = + 0.69 Signal of the Photomultiplier [a.u.]

HD Molecules

H H D D Brot Brot H D Brot Bc ~ Brot / r3 Bc (H2) Bc (HD) = 2.4 = 3.4 HD Molecules H H D D Brot Brot Naive Approximation: Distance Brot <-> H increased by 1/3 Distance Brot <-> D decreased by 1/3 Bc ~ Brot / r3 2/3 1/3 H D Brot Bc (H2) Bc (HD) = 2.4 = 3.4

Experimental Results for Mass 3 Pz = - 0.23 Preliminary

Production of polarized D2 and HD ice possible? T= 3-10K Cold Head D2 ice Polarization Measurement: NMR – Sensor Dr. Ralf Engels 25.06.2009

Conclusion We can measure: the polarization of atoms and molecules in a storage cell. the recombination of hydrogen/deuterium atoms on different surfaces and for different HFS. If Bc is known: the number of wall collisions of the molecules in the cell. Pay attention: Other depolarizing effects, e.g. magnetic impurities on the surface or charged islands on isolating surfaces, will increase the Bc.

Conclusion We can produce polarized H2, D2 and HD molecules with large vector- and tensor-polarization (~ 0.8) in many spin combinations. For what it is usefull? 1.) More dense polarized targets. 2.) Spectroscopy of the molecules or molecular ions (Contact with the University of Düsseldorf). 3.) New insights in chemical reactions / surface physics. 4.) Polarized fuel to increase the energy output of Fusion reactors. -> see talk on Wednesday, 2:30 pm 5.) Polarized targets for laser acceleration. -> see talk by M. Büscher on Wednesday, 5:05 pm 6.) EDM measurements ? 7.) An option to produce polarized molecules for medical application ?