Volume 83, Issue 6, Pages (December 2002)

Slides:



Advertisements
Similar presentations
A Hydrodynamic Model for Hindered Diffusion of Proteins and Micelles in Hydrogels Ronald J. Phillips Biophysical Journal Volume 79, Issue 6, Pages
Advertisements

Dynamic Molecular Structure of DPPC-DLPC-Cholesterol Ternary Lipid System by Spin- Label Electron Spin Resonance  Yun-Wei Chiang, Yuhei Shimoyama, Gerald.
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Volume 80, Issue 4, Pages (April 2001)
Volume 76, Issue 2, Pages (February 1999)
Volume 97, Issue 5, Pages (September 2009)
Volume 107, Issue 10, Pages (November 2014)
Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature
Anionic Lipids Modulate the Activity of the Aquaglyceroporin GlpF
Mechanism of the Lamellar/Inverse Hexagonal Phase Transition Examined by High Resolution X-Ray Diffraction  Michael Rappolt, Andrea Hickel, Frank Bringezu,
Volume 41, Issue 2, Pages (August 2004)
R. Jay Mashl, H. Larry Scott, Shankar Subramaniam, Eric Jakobsson 
Volume 85, Issue 5, Pages (November 2003)
Volume 99, Issue 10, Pages (November 2010)
Composition Fluctuations in Lipid Bilayers
Volume 97, Issue 4, Pages (August 2009)
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
Volume 103, Issue 12, Pages (December 2012)
Phase Behavior of Stratum Corneum Lipid Mixtures Based on Human Ceramides: The Role of Natural and Synthetic Ceramide 1  Joke A. Bouwstra, Gert S. Gooris,
D. Groen, G.S. Gooris, J.A. Bouwstra  Biophysical Journal 
Fusion Peptides Promote Formation of Bilayer Cubic Phases in Lipid Dispersions. An X- Ray Diffraction Study  Boris G. Tenchov, Robert C. MacDonald, Barry.
Christa Trandum, Peter Westh, Kent Jørgensen, Ole G. Mouritsen 
Tracking Phospholipid Populations in Polymorphism by Sideband Analyses of 31P Magic Angle Spinning NMR  Liam Moran, Nathan Janes  Biophysical Journal 
Ruitian Zhang, Rosangela Itri, Martin Caffrey  Biophysical Journal 
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Simulation Studies of Protein-Induced Bilayer Deformations, and Lipid-Induced Protein Tilting, on a Mesoscopic Model for Lipid Bilayers with Embedded.
Coarse-Grained Molecular Dynamics Simulations of Phase Transitions in Mixed Lipid Systems Containing LPA, DOPA, and DOPE Lipids  Eric R. May, Dmitry I.
Benjamin L. Stottrup, Sarah L. Keller  Biophysical Journal 
Michael Katzer, William Stillwell  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Volume 93, Issue 2, Pages (July 2007)
Biophysical and Transfection Studies of the diC14-Amidine/DNA Complex
Protein Interactions and Membrane Geometry
T.M. Okonogi, H.M. McConnell  Biophysical Journal 
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Volume 85, Issue 6, Pages (December 2003)
G. Garbès Putzel, Mark J. Uline, Igal Szleifer, M. Schick 
Electrostatic Control of Phospholipid Polymorphism
Molecular View of Hexagonal Phase Formation in Phospholipid Membranes
Desmosterol May Replace Cholesterol in Lipid Membranes
Volume 105, Issue 8, Pages (October 2013)
Volume 113, Issue 9, Pages (November 2017)
The Structural Basis of Cholesterol Accessibility in Membranes
Volume 83, Issue 3, Pages (September 2002)
Volume 94, Issue 11, Pages (June 2008)
Volume 12, Issue 12, Pages (December 2004)
Volume 80, Issue 3, Pages (March 2001)
Miscibility Critical Pressures in Monolayers of Ternary Lipid Mixtures
Protein Self-Association Induced by Macromolecular Crowding: A Quantitative Analysis by Magnetic Relaxation Dispersion  Karim Snoussi, Bertil Halle  Biophysical.
Volume 15, Issue 12, Pages (December 2007)
Volume 80, Issue 5, Pages (May 2001)
Volume 99, Issue 11, Pages (December 2010)
Volume 84, Issue 3, Pages (March 2003)
Volume 103, Issue 11, Pages (December 2012)
Juan M. Vanegas, Maria F. Contreras, Roland Faller, Marjorie L. Longo 
OmpT: Molecular Dynamics Simulations of an Outer Membrane Enzyme
Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC
Volume 85, Issue 3, Pages (September 2003)
Volume 99, Issue 11, Pages (December 2010)
Alexander Spaar, Christian Münster, Tim Salditt  Biophysical Journal 
Volume 83, Issue 6, Pages (December 2002)
Rumiana Koynova, Robert C. MacDonald  Biophysical Journal 
Deuterium NMR Study of the Effect of Ergosterol on POPE Membranes
Volume 80, Issue 3, Pages (March 2001)
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Volume 90, Issue 4, Pages (February 2006)
Distribution of Halothane in a Dipalmitoylphosphatidylcholine Bilayer from Molecular Dynamics Calculations  Laure Koubi, Mounir Tarek, Michael L. Klein,
Presentation transcript:

Volume 83, Issue 6, Pages 3393-3407 (December 2002) Membrane Protein Crystallization In Meso: Lipid Type-Tailoring of the Cubic Phase  Vadim Cherezov, Jeffrey Clogston, Yohann Misquitta, Wissam Abdel-Gawad, Martin Caffrey  Biophysical Journal  Volume 83, Issue 6, Pages 3393-3407 (December 2002) DOI: 10.1016/S0006-3495(02)75339-3 Copyright © 2002 The Biophysical Society Terms and Conditions

Figure 1 Lipid phases. Cartoon representation of the various solid (lamellar crystal phase), mesophase (lamellar liquid crystal phase, cubic-Pn3m phase (space group number 224, diamond type D), cubic-Ia3d phase (space group number 230, gyroid type I), cubic-Im3m phase (space group number 229, primitive type P), normal hexagonal, and inverted hexagonal phase), and liquid (fluid isotropic phase (Larsson, 1994)) states adopted by lipids dispersed in water. Individual lipids are shown as lollipop figures with the pop and stick parts representing the polar headgroup and the apolar acyl chain, respectively. The shaded regions represent water. The normal and inverted designations refer to the curvature of the lipid/water interface that is convex and concave, respectively, when viewed from the aqueous medium. Biophysical Journal 2002 83, 3393-3407DOI: (10.1016/S0006-3495(02)75339-3) Copyright © 2002 The Biophysical Society Terms and Conditions

Figure 2 Temperature-composition phase diagram for the monoolein/water system (adapted from Briggs et al., 1996). The phase diagram was constructed in the heating and cooling directions beginning at 25°C. Boundary positions have an estimated error of ±2.0% (w/w) water in composition and ±2.5°C in temperature, as described (Misquitta and Caffrey, 2001) and as indicated. Biophysical Journal 2002 83, 3393-3407DOI: (10.1016/S0006-3495(02)75339-3) Copyright © 2002 The Biophysical Society Terms and Conditions

Figure 3 Molecular structures of the lipids used in this study. Biophysical Journal 2002 83, 3393-3407DOI: (10.1016/S0006-3495(02)75339-3) Copyright © 2002 The Biophysical Society Terms and Conditions

Figure 4 X-ray diffraction patterns of the various phases identified in the monoolein/water system with lipid additives. Phase identity and sample composition are as follows: (A) Lα phase, DMPE-mPEG550 (4.8mol % in monoolein, 20°C); (B) Cubic-Pn3m phase, DOPC (0.17mol % in monoolein, 4°C); (C) Cubic-Im3m phase, DMPE-mPEG550 (0.8mol % in monoolein, 20°C); (D) HII phase, DOPE (23.1mol % in monoolein, 20°C); (E) HI phase, DMPE-mPEG550 (83.1mol % in monoolein, 20°C); (F) Cubic-Im3m plus crystals of cholesterol monohydrate (33.3mol % in monoolein, 20°C); (G) Cubic-Pn3m plus oleamide crystals (50mol % in monoolein, 20°C). Crystalline reflections in F and G are marked with arrows. Biophysical Journal 2002 83, 3393-3407DOI: (10.1016/S0006-3495(02)75339-3) Copyright © 2002 The Biophysical Society Terms and Conditions

Figure 5 Dependence of the lattice parameters of the phases formed by mixtures of DOPC (A), DOPE (B), DOPS (C), cardiolipin (D), lyso-PC (E), DMPE-mPEG550 (F), 2-MO (G), oleamide (H), and cholesterol (I) and monoolein at 60% (w/w) water determined by small-angle x-ray diffraction. Measurements were made at 20°C (solid symbols) and in the cooling direction at 4°C (open symbols) where undercooling is expressed (Qiu and Caffrey, 2000). The identity of each of the phases is as follows: ■, Lα (d001); ●, cubic-Pn3m (d100); ▴, cubic-Im3m (d100); ◀, HI (d10), ♦, HII (d10); , cholesterol monohydrate; ★, Lc-oleamide. The lattice parameter values reported are accurate to ±0.2Å for the Lc, ±0.5Å for the Lα and HII phases, ±2Å for the cubic-Pn3m and cubic-Im3m phases, and ±5Å for the highly swollen cubic-Pn3m (with lattice parameter>140Å) and cubic-Im3m phases (with lattice parameter>180Å). Lipid concentration is expressed as mol % and is calculated as [100 (moles of lipid)/(moles of lipid+moles of monoolein)]. Biophysical Journal 2002 83, 3393-3407DOI: (10.1016/S0006-3495(02)75339-3) Copyright © 2002 The Biophysical Society Terms and Conditions