Physics cases for tracking

Slides:



Advertisements
Similar presentations
The Belle Silicon Vertex Detector T. Tsuboyama (KEK) 6 Dec Workshop New Hadrons with Various Flavors 6-7 Dec Nagoya Univ.
Advertisements

Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Advanced GAmma Tracking Array
Reactions induced by 11 Be beam at Rex-Isolde. Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Pion yield studies for proton drive beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments Sergei Striganov Fermilab Workshop.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Transfer reactions Resonant Elastic scattering Inelastic scattering: GR.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Vertex2002 pCT: Hartmut F.-W. Sadrozinski, SCIPP Initial Studies in Proton Computed Tomography L. R. Johnson, B. Keeney, G. Ross, H. F.-W. Sadrozinski,
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
Xy position from LYCCA Slowed down beams - new perspective for GOSIA scattering experiments at relativistic energies.
Zbigniew Chajęcki National Superconducting Cyclotron Laboratory Michigan State University Probing reaction dynamics with two-particle correlations.
R&D for R3B/EXL silicon spectrometers, ELISe in-ring instrumentation based on planar Si and CVDD Alexander Gorshkov Flerov Laboratory of Nuclear Reactions.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Fast Timing with Diamond Detectors Lianne Scruton.
Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.
Monte Carlo simulation of liquid scintillation neutron detectors: BC501 vs. BC537 J.L. Tain Instituto de Física Corpuscular C.S.I.C - Univ.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Measurement of the η’N scattering length at LEPS2 2014/2/20 Keigo Mizutani Kyoto Univ.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
5th July 00PSI SEU Studies1 Preliminary PSI SEU Studies Study SEU effects by measuring the BER of the link in  /p beams at PSI. Measure the SEU rate as.
Presentation by T. Gogami 2015/6/15 (Mon). Equation state of neutron matter.
I. MARTEL SGFDC UNIVERSITY OF HUELVA JULY 2007 Collaboration: University of Huelva, Spain (coordinator) GSI-Darmstadt, Germany. University of.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
Neutron inelastic cross section measurement on 28 Si Alexandru Negret Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest,
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
1 Design of active-target TPC. Contents I.Physics requirements II.Basic structure III.Gas property IV.Electric field Distortion by ground Distortion of.
César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH Status of and Expected Performance AGATA ISTANBUL WORKSHOP
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
P460 - Relativity21 Lorentz Transformations (px,py,px,E) are components of a 4-vector which has same Lorentz transformation px’ =  (px + uE/c 2 ) u =
Study of  ++ Resonance Abundance in 158 AGeV Pb + Pb Collisions at CERN-SPS CERN-SPS-WA98 Susumu SATO Susumu SATO Contents 1) Introduction ~ Relativistic.
Status on the HYDE project Collaboration: University of Huelva, Spain (coordinator) GSI-Darmstadt, Germany. University of Sevilla, Spain. CSIC-IEM Madrid,
Observation of new neutron-deficient multinucleon transfer reactions
ЭКСПЕРИМЕНТ R3B РЕАКЦИИ С РЕЛЯТИВИСТКИМИ РАДИОАКТИВНЫМИ ПУЧКАМИ НА УСКОРИТЕЛЬНОМ КОМПЛЕКСЕ FAIR (GSI, DARMSTADT, GERMANY) Е.М. МАЕВ.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Opportunities for statistical methods in nuclear reactions: Streamlining calibrations and improving sensitivity.
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
INPC2013 Florence June 2-7 Scattering of light halo nuclei on heavy target at energies around the Coulomb barrier Olof TENGBLAD Instituto de Estructura.
School of Physics and Nuclear Energy Engineering
Simulation of Luminosity Variation
Efficiency versus energy resolution
Presolar Grains Bulk of material in the solar system is a mixture from a large number of stellar source---mixing in interstellar medium or during solar.
A.Smirnov, A.Sidorin, D.Krestnikov
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee Effects of the neutron halo in 15C scattering at.
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
PHL424: Semi-classical reaction theory
Particle Identification in LHCb
Vamos + Exogam Spectrometer
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
Russian Research Center “ Kurchatov Institute”
Variable Mode High Acceptance Spectrometer
Rare Isotope Spectroscopic INvestigation at GSI
GEANT Simulations and Track Reconstruction
PHL424: Semi-classical reaction theory
Design of active-target TPC
Efficiency versus energy resolution
Rare Isotope Spectroscopic INvestigation at GSI
Status and perspectives of the LNS-FRIBS facility
LEPTA project Measuring lifetime of positrons
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Rare Isotope Spectroscopic INvestigation at GSI
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Physics cases for tracking Calculations made by Lisbon and Sevilla. Similations by D. Rodriguez (Huelva)

19C at the Low Energy Branch (LEB) Settings 1: 48Ca energy: 400 MeV/u. Graphite target:  = 3 g/cm2 Degrader 1: Al with  = 20.9 g/cm2. Degrader 2: Al with  = 10.5 g/cm2. Without contaminants. Settings 2: 48Ca energy: 400 MeV/u. Graphite target:  = 3 g/cm2 Degrader 1: Al with  = 20.9 g/cm2. Same yield of 20N and 19C. Calculations courtesy of David Boutin

The Low Energy Branch (LEB) 19C estimates Settings 1

Beam parameters and tracking system <E(11Be)> = 38 MeV/u <E(19C)> = 8.4 MeV/u EFWHM = 3 MeV/u  x (19C)= 344  mm mrad y (19C)= 376  mm mrad  x (11Be)= 344  mm mrad  y (11Be)= 376  mm mrad 30 cm C8H8 (for 11Be) 1 mg/cm2 Diameter: 10 cm Track1 DSSSD (20 m) SeD? 2 m 11Be Track2 DSSSD (20 m) SeD? 19C 208Pb (for 19C) 1 mg/cm2 Diameter: 10 cm

Detector setup Detection set-ups: - E1 : DSSSD Si-40m. E1 E2 E/ E3 E Detection set-ups: - E1 : DSSSD Si-40m. - E2 : DSSD 200 m. E/ E3 : Single PAD 1.5 mm. E : CsI 6 cm. Pulse shape analysis. Time of flight. 40º 1) d = 17 cm Angular resolution: 2º. Pixel: 3x3 mm2. 30º 18C 19C 19C @ 160 MeV 10º 2) d = 34.4 cm Angular resolution: 2º Pixel: 6x6 mm2 Beam Target 10Be 0º d 3) d = 68.8 cm. Angular resolution: 2º Pixel: 1.2x1.2 cm2

19C Elastic scattering + break-up (no tracking) 20 40 60 80 100 120 140 20 40 60 80 100 120 140 E /MeV 1) E /MeV 2) 19C 19C 18C 18C 50 100 150 200 250 50 100 150 200 250 Etotal /MeV Etotal /MeV E = E1+ E2 Detector resolution 2% (Si) 20 40 60 80 100 120 140 E /MeV 3) 19C 18C 18C 50 100 150 200 250 Etotal /MeV

19C Elastic scattering + break-up (tracking) 20 40 60 80 100 120 140 20 40 60 80 100 120 140 E /MeV 1) 2) 19C 18C 18C 19C t = 1 ns 50 100 150 200 250 50 100 150 200 250 Etotal /MeV Etotal /MeV 20 40 60 80 100 120 140 3) 3) E /MeV 18C 3) 19C High time resolution needed SeD 50 100 150 200 250 Etotal /MeV

11Be Elastic scattering + break-up 20 40 60 80 100 120 140 3) No tracking 10Be E /MeV 10Be 11Be E = E1+ E2 + E3 Detector resolution 2% (Si) Detector resolution 10% (CsI) 50 150 250 350 450 Etotal /MeV 20 40 60 80 100 120 140 20 40 60 80 100 120 140 E /MeV 3) Tracking 3) Tracking+ pixel t = 60 ps 10Be 11Be 50 150 250 350 450 50 150 250 350 450 Etotal /MeV Etotal /MeV

Low energy vs high energy Beam Energy Velocity Collision time (a=2 fm) Maximum excitation energy Timing resolution (dv/v=1%,L=2m) 5 MeV/u 0.1 c 20 fm/c 10 MeV 0.66 ns 20 MeV/u 0.2 c 10 fm/c 20 MeV 0.33 ns 80 MeV/u 0.4 c 5 fm/c 40 MeV 0.16 ns

Tracking requirements for low energy beams (5-20 MeV/u) Angular resolution: 0.5º-1º Timing: 0.7-0.3 ns

Transverse momentum resolution pT = m v q