Multiscale modeling of hydrogen isotope transport in porous graphite

Slides:



Advertisements
Similar presentations
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
Advertisements

PWI Modelling Meeting – EFDA C. J. OrtizCulham, Sept. 7 th - 8 th, /8 Defect formation and evolution in W under irradiation Christophe J. Ortiz Laboratorio.
Molecular Dynamics modelling of mixed layer formation K. Nordlund, C. Björkas, N. Juslin, K. Vörtler Accelerator Laboratory, University of Helsinki P.
Development of analytical bond- order potentials for the Be-C-W-H system C. Björkas, N. Juslin, K. Vörtler, H. Timkó, K. Nordlund Department of Physics,
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
D retention in O-covered and pure beryllium
18 th International Conference on Plasma Surface Interaction in Controlled Fusion Toledo, Spain, May 26 – 30, Deuterium trapping in tungsten damaged.
PHYS466 Project Kyoungmin Min, Namjung Kim and Ravi Bhadauria.
Modeling hydrocarbon generation / transport In fusion experiments John Hogan Fusion Energy Division Oak Ridge National Laboratory First Meeting Co-ordinated.
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
Dynamic hydrogen isotope behavior and its helium irradiation effect in SiC Yasuhisa Oya and Satoru Tanaka The University of Tokyo.
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
Two Approaches to Multiphysics Modeling Sun, Yongqi FAU Erlangen-Nürnberg.
Edge plasma physics – a bridge between several disciplines Ralf Schneider IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D
Max-Planck-Institut für Plasmaphysik, EURATOM Association Computational Plasmaphysics Ralf Schneider Max-Planck-Institut für Plasmaphysik, Euratom-IPP.
Electronic Excitation in Atomic Collision Cascades COSIRES 2004, Helsinki C. Staudt Andreas Duvenbeck Zdenek SroubekFilip Sroubek Andreas Wucher Barbara.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Flow of Fluids and Solids at the Nanoscale Thomas Prevenslik QED Radiations Discovery Bay, Hong Kong, China Proc. 2nd Conference on Heat Transfer Fluid.
Molecular Dynamics Simulations of Cascades in Nuclear Graphite H. J. Christie, D. L. Roach, D. K. Ross The University of Salford, UK I. Suarez-Martinez,
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
Study on Effective Thermal Conduction of the Nanoparticle Suspension Calvin Hong Li Department of Mechanical, Aerospace & Nuclear Engineering Rensselaer.
Iain D. Boyd and Brandon Smith Department of Aerospace Engineering University of Michigan Ann Arbor, MI Molecular Dynamics Simulation of Sputtering.
RESULTS I: Comparison for the different rare-gases Xenon SO constant = eV E( 2 P 1/2 ) – E( 2 P 3/2 ) = eV D 0 (Xe 3 + ) = eV 1 Experiment:
Challenges in edge modeling IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D Greifswald, Germany Outline: 1. Motivation 2.
ChE 553 Lecture 12 Theory Of Sticking 1. Objective Develop a qualitative understanding of sticking Go over some models for the process 2.
Atomic scale understandings on hydrogen behavior in Li 2 O - toward a multi-scale modeling - Satoru Tanaka, Takuji Oda and Yasuhisa Oya The University.
Chem. 860 Molecular Simulations with Biophysical Applications Qiang Cui Department of Chemistry and Theoretical Chemistry Institute University of Wisconsin,
Depth-profiling and thermal desorption of hydrogen isotopes for plasma facing carbon tiles in JT-60U (Long term hydrogen retention) T. Tanabe, Kyushu University.
Olga Ogorodnikova, 2008, Salamanka, Spain Comments to modelling of hydrogen retention and permeation in tungsten O.V. Ogorodnikova Max-Planck-Institut.
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Study of Pentacene clustering MAE 715 Project Report By: Krishna Iyengar.
Understanding Molecular Simulations Introduction
Computational Aspects of Multi-scale Modeling Ahmed Sameh, Ananth Grama Computing Research Institute Purdue University.
University of Wisconsin Chambers Work John Santarius, Greg Moses, and Milad Fatenajed HAPL Team Meeting Georgia Institute of Technology February 5-6, 2004.
Meta-stable Sites in Amorphous Carbon Generated by Rapid Quenching of Liquid Diamond Seung-Hyeob Lee, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee, and.
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
Korea Institute of Science and Technology Seung-Hyeob Lee, Churl-Seung Lee, Seung-Cheol Lee, Kyu-Hwan Lee, and Kwang-Ryeol Lee Future Technology Research.
Introduction to Plasma-Surface Interactions Lecture 5 Sputtering.
Namas Chandra and Sirish Namilae
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
Ignacio Martin-Bragado1, Ignacio Dopico1 and Pedro Castrillo2
Experiments on low-temperature thin-film growth carried out by Stoldt et al [PRL 2000] indicate that the surface roughness exhibits a complex temperature.
Molecular Dynamics by X-Rays?
Computational Techniques for Efficient Carbon Nanotube Simulation
Condensed Matter Physics and Materials Science: David M
Predictive Modeling and Simulation of Charge Mobility in 2D Material Based Devices Altaf Karim Department of Physics, COMSATS Institute of Information.
of multispecies edge plasmas
Meeting 指導教授:李明倫 學生:劉書巖.
Molecular Dynamics Simulations of Ion Irradiation of a Surface under an Electric Field S. Parviainen, F. Djurabekova.
Recycling and impurity retention in high-density,
Finite difference code for 3D edge modelling
E3D: status report and application to DIII-D
Gyrofluid Turbulence Modeling of the Linear
of interfaces in glass/crystal composites for nuclear wasteforms
Fuel Cell Modeling In AMESim
Atomistic simulations of contact physics Alejandro Strachan Materials Engineering PRISM, Fall 2007.
Atomistic materials simulations at The DoE NNSA/PSAAP PRISM Center
OH KINETICS IN A SHIELDED ATMOSPHERIC PRESSURE PLASMA JET
Masoud Aryanpour & Varun Rai
Carbon erosion processes
Tao Liang, W. Gregory Sawyer. , Scott S. Perry, Susan B
Studies of impurity migration in TEXTOR by local tracer injection
Diffusion Across Channels and Along Pores
Time-dependent picture for trapping of an anomalous massive system
Alkane C-H Bond Breaking at Catalytic Metal Surfaces: Theory
Multiscale Modeling and Simulation of Nanoengineering:
The Atomic-scale Structure of the SiO2-Si(100) Interface
Presentation transcript:

Multiscale modeling of hydrogen isotope transport in porous graphite Max-Planck-Institut für Plasmaphysik, EURATOM Association Multiscale modeling of hydrogen isotope transport in porous graphite Manoj Warrier Thesis advisor: Ralf Schneider PhD work within IMPRS since January, 2002 Max-Planck Institut für Plasmaphysik Stellarator Theory Division, Edge Modeling Group

Max-Planck-Institut für Plasmaphysik, EURATOM Association 2. Outline Plasma Wall Interaction and motivation Multi-scale approach and results Summary and conclusions

3. Plasma Wall Interaction in Fusion Max-Planck-Institut für Plasmaphysik, EURATOM Association 3. Plasma Wall Interaction in Fusion Challenge: Extremely high power loads Requirement: Pure plasma core

Good thermal conductivity, high sublimation energy, low atomic number Max-Planck-Institut für Plasmaphysik, EURATOM Association 4. Graphite as a PFM Good thermal conductivity, high sublimation energy, low atomic number V. Rohde (IPP, Garching) But: chemical sputtering, hydrogen isotope inventory

5. Porous Structure of Graphite Max-Planck-Institut für Plasmaphysik, EURATOM Association 5. Porous Structure of Graphite Granule sizes ~ microns Void sizes ~ 0.1 microns Crystallite sizes ~ 50-100 Å Micro-void sizes ~ 5-10 Å Multi-scale problem in space (1 cm to 1 Å) and time (ps to s) H transport in complex, 3D, porous graphite structure

6. Multi-scale approach Macroscales Mesoscales Microscales Max-Planck-Institut für Plasmaphysik, EURATOM Association 6. Multi-scale approach Macroscales KMC and Monte Carlo Diffusion (MCD) Mesoscales Kinetic Monte Carlo (KMC) Microscales Molecular Dynamics (MD)

7. Molecular dynamics at microscales Max-Planck-Institut für Plasmaphysik, EURATOM Association 7. Molecular dynamics at microscales Hydrogen in crystal graphite (960 atoms) Brenner potential, Nordlund long range interaction HCParcas: Developed by Kai Nordlund Berendsen thermostat (150K - 900K for 100 ps) Reactive Empirical Bond Order (REBO) potential allows simulation of hydrocarbon reactions Periodic boundary conditions

8. MD simulation at 150K and 900K 150K 900K Max-Planck-Institut für Plasmaphysik, EURATOM Association 8. MD simulation at 150K and 900K 150K 900K Large jumps at high temperatures > 450K No diffusion across graphene layers

9. MD simulation results Two diffusion channels Max-Planck-Institut für Plasmaphysik, EURATOM Association 9. MD simulation results Two diffusion channels Non-Arrhenius temperature dependence for hydrogen isotope diffusion in crystal graphite

10. Kinetic Monte Carlo - basic idea Max-Planck-Institut für Plasmaphysik, EURATOM Association 10. Kinetic Monte Carlo - basic idea Poisson process (assigns real time to the jumps) Jumps are independent (no memory)

11. Mesoscales - Comparison with experiments Max-Planck-Institut für Plasmaphysik, EURATOM Association 11. Mesoscales - Comparison with experiments standard graphites highly saturated graphite Large variation in observed diffusion coefficients Strong dependence on void sizes and not void fraction Saturated H: 0~105s-1 and step sizes ~1Å (QM?)

12. Effect of voids A: 10 % voids B: 20 % voids C: 20 % voids Max-Planck-Institut für Plasmaphysik, EURATOM Association 12. Effect of voids A: 10 % voids B: 20 % voids C: 20 % voids Larger voids Longer jumps Higher diffusion

13. KMC and MCD at macroscales Max-Planck-Institut für Plasmaphysik, EURATOM Association 13. KMC and MCD at macroscales Trapping - detrapping (2.7 eV) Desorption (1.9 eV) Surface diffusion (0.9 eV) KMC with Jump lengths depend on the process Monte Carlo Diffusion (MCD) used to simulate TGD ζ

14. Results at macroscales Max-Planck-Institut für Plasmaphysik, EURATOM Association 14. Results at macroscales variation of 3D structure surface diffusion 0.9 eV adsorption- desorption 1.9 eV Different processes dominate at different temperatures Diffusion in voids dominates Diffusion coefficients without knowledge of structure are meaningless

15. Further results at macroscales Max-Planck-Institut für Plasmaphysik, EURATOM Association 15. Further results at macroscales Interpretation of diffusion? Subdiffusion Superdiffusion H atom desorption begins above 1200 K Closed pores efficiently supress hydrogen diffusion

Max-Planck-Institut für Plasmaphysik, EURATOM Association 16. Defect agglomeration Graphite surface during hydrogen bombardment (STM analysis from T. Angot et al., Univ. of Provence, Marseille)

Defect agglomeration on graphite surface reproduced by simulation Max-Planck-Institut für Plasmaphysik, EURATOM Association 17. Defect agglomeration Defect agglomeration on graphite surface reproduced by simulation

Defect agglomeration on graphite surface reproduced by simulation Max-Planck-Institut für Plasmaphysik, EURATOM Association 17. Defect agglomeration Defect agglomeration on graphite surface reproduced by simulation

Diffusion coefficients without knowledge of structure are meaningless Max-Planck-Institut für Plasmaphysik, EURATOM Association Summary Multi-scale model developed M. Warrier, R. Schneider, E. Salonen, K. Nordlund, Physica Scripta, T108 (2004) 85. M. Warrier, R. Schneider, X Bonnin, Computer Physics Communications, 160, 1 (2004) 46 R. Schneider, et. al., Computer Physics Communications 164 (2004) 9. Model reproduces experimental results: H atom desorption, diffusion coefficients, defect agglomeration M. Warrier, R. Schneider, E. Salonen, K. Nordlund, J. Nucl. Mater (In press). M. Warrier, R. Schneider, E. Salonen, K. Nordlund, Contrib. Plasma Phys., 44, 1-3 (2004) 307 Model suited for predictions: diffusion coefficients, isotope exchange, chemical sputtering Diffusion coefficients without knowledge of structure are meaningless