FTP, SMTP and DNS 2: Application Layer.

Slides:



Advertisements
Similar presentations
DNS – Domain Name system Converting domain names to IP addresses since 1983.
Advertisements

Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
1 Outline r Principles of network applications m App architectures m App requirements r Web and HTTP m Objects vs. root files m Persistent, pipelining,
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
Chapter 2: Application layer  2.1 Web and HTTP  2.2 FTP 2-1 Lecture 5 Application Layer.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
1 Review of Previous Lecture r Principles of network applications m App architectures m App requirements r Web and HTTP m Non-persistent & persistent Pipeling.
Name Resolution and DNS. Domain names and IP addresses r People prefer to use easy-to-remember names instead of IP addresses r Domain names are alphanumeric.
Electronic Mail Three major components: SMTP user agents mail servers
Chapter 2 Application Layer
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
Domain Name System (DNS)
1 Application Layer Lecture 5 Imran Ahmed University of Management & Technology.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail m SMTP,
1 Computer Communication & Networks Lecture 27 Application Layer: Electronic mail and FTP Waleed.
2: Application Layer1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
21-1 Last time □ Finish HTTP □ FTP This time □ SMTP ( ) □ DNS.
CS 471/571 Domain Name Server Slides from Kurose and Ross.
DNS: Domain Name System
Review: –Which protocol is used to move messages around in the Internet? –Describe how a message is moved from the sender’s UA to the receiver’s.
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
1 Application Layer Lecture 6 Imran Ahmed University of Management & Technology.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 DNS: Domain Name System People have many identifiers: SSN, name, passport number Internet hosts, routers have identifiers, too: IP.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.
CS 3830 Day 9 Introduction 1-1. Announcements r Quiz #2 this Friday r Demo prog1 and prog2 together starting this Wednesday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
FTP, Mail and DNS protocols
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
1. Internet hosts:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., ww.yahoo.com - used by humans DNS: provides translation between.
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Last time Finish HTTP FTP.
2: Application Layer 1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
Introduction to Networks
Session 6 INST 346 Technologies, Infrastructure and Architecture
Chapter 9: Domain Name Servers
Introduction to Communication Networks
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
No Class on Friday There will be NO class on: FRIDAY 1/27/17
Chapter 2 Application Layer
Chapter 7: Application layer
Cookies, Web Cache & DNS Dr. Adil Yousif.
Review of Previous Lecture
Chapter 2: Application layer
CSE 4213: Computer Networks II
DNS: Domain Name System
Chapter 2 Application Layer
Lecture 3 – Chapter 2 CIS 5617, Fall 2019 Anduo Wang
Presentation transcript:

FTP, SMTP and DNS 2: Application Layer

FTP: separate control, data connections client server TCP control connection port 21 TCP data connection port 20 FTP client contacts FTP server at port 21, specifying TCP as transport protocol Client obtains authorization over control connection Client browses remote directory by sending commands over control connection. When server receives a command for a file transfer, the server opens a TCP data connection to client After transferring one file, server closes connection. Server opens a second TCP data connection to transfer another file. Control connection: “out of band” FTP server maintains “state”: current directory, earlier authentication 2: Application Layer

Electronic Mail Three major components: SMTP SMTP SMTP user agents user mailbox outgoing message queue user agent Three major components: user agents mail servers simple mail transfer protocol: SMTP User Agent a.k.a. “mail reader” composing, editing, reading mail messages e.g., Eudora, Outlook, elm, Netscape Messenger outgoing, incoming messages stored on server mail server user agent SMTP mail server user agent SMTP mail server SMTP user agent user agent user agent 2: Application Layer

Electronic Mail: mail servers user agent Mail Servers mailbox contains incoming messages for user message queue of outgoing (to be sent) mail messages SMTP protocol between mail servers to send email messages client: sending mail server “server”: receiving mail server mail server user agent SMTP mail server user agent SMTP mail server SMTP user agent user agent user agent 2: Application Layer

Electronic Mail: SMTP [RFC 2821] uses TCP to reliably transfer email message from client to server, port 25 direct transfer: sending server to receiving server three phases of transfer handshaking (greeting) transfer of messages closure command/response interaction commands: ASCII text response: status code and phrase messages must be in 7-bit ASCII 2: Application Layer

Scenario: Alice sends message to Bob 1) Alice uses UA to compose message and “to” bob@someschool.edu 2) Alice’s UA sends message to her mail server; message placed in message queue 3) Client side of SMTP opens TCP connection with Bob’s mail server 4) SMTP client sends Alice’s message over the TCP connection 5) Bob’s mail server places the message in Bob’s mailbox 6) Bob invokes his user agent to read message mail server mail server 1 user agent user agent 2 3 6 4 5 2: Application Layer

Mail access protocols SMTP SMTP access protocol user agent user agent sender’s mail server receiver’s mail server SMTP: delivery/storage to receiver’s server Mail access protocol: retrieval from server POP: Post Office Protocol [RFC 1939] authorization (agent <-->server) and download IMAP: Internet Mail Access Protocol [RFC 1730] more features (more complex) manipulation of stored msgs on server HTTP: Hotmail , Yahoo! Mail, etc. 2: Application Layer

DNS: Domain Name System distributed database implemented in hierarchy of many name servers application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation) note: core Internet function, implemented as application-layer protocol complexity at network’s “edge” People: many identifiers: SSN, name, passport # Internet hosts, routers: IP address (32 bit) - used for addressing datagrams “name”, e.g., ww.yahoo.com - used by humans Q: map between IP addresses and name ? 2: Application Layer

DNS and Applications Which applications use DNS? HTTP Browser extracts hostname Sends hostname to DNS DNS does lookup and returns IP address Browser sends HTTP GET to IP address 2: Application Layer

DNS Why not centralize DNS? single point of failure traffic volume distant centralized database maintenance doesn’t scale! 2: Application Layer

Distributed, Hierarchical Database Root DNS Servers com DNS servers org DNS servers edu DNS servers poly.edu DNS servers umass.edu yahoo.com amazon.com pbs.org Client wants IP for www.amazon.com; 1st approx: Client queries a root server to find com DNS server Client queries com DNS server to get amazon.com DNS server Client queries amazon.com DNS server to get IP address for www.amazon.com 2: Application Layer

DNS: Root name servers contacted by local name server that can not resolve name root name server: contacts authoritative name server if name mapping not known gets mapping returns mapping to local name server b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA (and 17 other locations) i Autonomica, Stockholm (plus 3 other locations) k RIPE London (also Amsterdam, Frankfurt) m WIDE Tokyo a Verisign, Dulles, VA c Cogent, Herndon, VA (also Los Angeles) d U Maryland College Park, MD g US DoD Vienna, VA h ARL Aberdeen, MD j Verisign, ( 11 locations) 13 root name servers worldwide 2: Application Layer

TLD and Authoritative Servers Top-level domain (TLD) servers: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp. Network solutions maintains servers for com TLD Educause for edu TLD Authoritative DNS servers: organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web and mail). Can be maintained by organization or service provider 2: Application Layer

Local Name Server Does not strictly belong to hierarchy Each ISP (residential ISP, company, university) has one. Also called “default name server” When a host makes a DNS query, query is sent to its local DNS server Acts as a proxy, forwards query into hierarchy. 2: Application Layer

authoritative DNS server Example root DNS server 2 Host at cis.poly.edu wants IP address for gaia.cs.umass.edu 3 TLD DNS server 4 5 local DNS server dns.poly.edu 7 6 1 8 authoritative DNS server dns.cs.umass.edu requesting host cis.poly.edu gaia.cs.umass.edu 2: Application Layer

authoritative DNS server Recursive queries requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu 1 2 4 5 6 authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server 3 recursive query: puts burden of name resolution on contacted name server heavy load? iterated query: contacted server replies with name of server to contact “I don’t know this name, but ask this server” 2: Application Layer

DNS: caching and updating records once (any) name server learns mapping, it caches mapping cache entries timeout (disappear) after some time TLD servers typically cached in local name servers Thus root name servers not often visited update/notify mechanisms under design by IETF RFC 2136 http://www.ietf.org/html.charters/dnsind-charter.html 2: Application Layer

RR format: (name, value, type, ttl) DNS records DNS: distributed db storing resource records (RR) RR format: (name, value, type, ttl) Type=A name is hostname value is IP address Type=CNAME name is alias name for some “cannonical” (the real) name www.ibm.com is really servereast.backup2.ibm.com value is cannonical name Type=NS name is domain (e.g. foo.com) value is IP address of authoritative name server for this domain Type=MX value is name of mailserver associated with name 2: Application Layer