Quarterly Technical Report III for Pittsburgh Digital Greenhouse

Slides:



Advertisements
Similar presentations
MB Page1Mihai Banu, July 2002 WCR #7 Nyquist rate ADC Main design motivation: Low Power Features: Pipeline arquitecture. Two interleaved ADCs with shared.
Advertisements

EE435 Final Project: 9-Bit SAR ADC
Mixed Signal Chip Design Lab Analog-to-Digital Converters Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania State.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Current-Mode Multi-Channel Integrating ADC Electrical Engineering and Computer Science Advisor: Dr. Benjamin J. Blalock Neena Nambiar 16 st April 2009.
1 A New Successive Approximation Architecture for Low-Power Low-Cost A/D Converter IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.38, NO.1, JANUARY 2003 Chi-sheng.
Analog-to-Digital Converters
A Low-Power 4-b 2.5 Gsample/s Pipelined Flash Analog-to-Digital Converter Using Differential Comparator and DCVSPG Encoder Shailesh Radhakrishnan, Mingzhen.
A 0.35μm CMOS Comparator Circuit For High-Speed ADC Applications Samad Sheikhaei, Shahriar Mirabbasi, and Andre Ivanov Department of Electrical and Computer.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
Slide: 1International Conference on Electronics, Circuits, and Systems 2010 Department of Electrical and Computer Engineering University of New Mexico.
1 Quarterly Technical Report 1 for Pittsburgh Digital Greenhouse Kyusun Choi The Pennsylvania State University Computer Science and Engineering Department.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
R. Kass US LC Conference 1 Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology R. Kass The Ohio State University.
CSE 598A Project Proposal James Yockey
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
1 Successive Approximation Analog-to- Digital Conversion at Video Rates 指導教授 :汪輝明 學 生:陳柏宏.
Mixed Signal Chip Design Lab Cubic Function Generator Design Boram Lee, Jaehyun Lim Department of Computer Science and Engineering The Pennsylvania State.
Mixed Signal Chip Design Lab Cubic Function Generator Design Boram Lee, Jaehyun Lim Department of Computer Science and Engineering The Pennsylvania State.
New Power Saving Design Method for CMOS Flash ADC Institute of Computer, Communication and Control, Circuits and Systems, July 2004 IEEE 班級 :積體碩一 姓名 :黃順和.
Mixed Signal Chip Design Lab Cubic Function Generator Design Boram Lee, Jaehyun Lim Department of Computer Science and Engineering The Pennsylvania State.
Why Data Conversion? Real world is analog Mostly, communication and computation is digital Need a component to convert analog signals to digital (ADC)
Technical Report High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and Engineering Department The Pennsylvania.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
Analog to Digital Converters
Low Power, High-Throughput AD Converters
ECE 2799 Electrical and Computer Engineering Design ANALOG to DIGITAL CONVERSION Prof. Bitar Last Update:
1 R/2R DAC w/ SPI interface for the IBM 130nm Process Larry Ruckman Physics April2010.
1 Quarterly Technical Report II for Pittsburgh Digital Greenhouse Kyusun Choi The Pennsylvania State University Computer Science and Engineering Department.
Low Power, High-Throughput AD Converters
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
CS-EE 481 Spring University of Portland School of Engineering Project Golden Mantle CMOS 8-Bit Analog-to-Digital Converter Team T Travis Tompkins.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Technical Report 4 for Pittsburgh Digital Greenhouse High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and.
Low Power, High-Throughput AD Converters
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
A high speed 10 to 12 bits pipe line ADC, design proposal for ECAL
SKIROC status Calice meeting – Kobe – 10/05/2007.
Spring 2006CSE 597A: Analog-Digital IC Design Scan-Flash ADC Low Power, High-Throughput AD Converters Melvin Eze Pennsylvania State University
CS-EE 481 Spring March, 2005 University of Portland School of Engineering Project Bighorn CMOS Low Pass Switched Capacitor Filter Team Brien Bliatout.
Midway evaluation Your name. Title of your PhD work Title.
Digital to analog converter [DAC]
A 12-bit low-power ADC for SKIROC
A General Purpose Charge Readout Chip for TPC Applications
10 Gbps Transimpedance Amplifier and Laser Driver in 0.18 um CMOS
Design of the 64-channel ASIC: status
High speed pipelined ADC + Multiplexer for CALICE
High speed 12 bits Pipelined ADC proposal for the Ecal
9th Workshop on Electronics for LHC Experiments
R&D activity dedicated to the VFE of the Si-W Ecal
Hugo França-Santos - CERN
A Readout Electronics System for GEM Detectors
Pedro Henrique Köhler Marra Pinto and Frank Sill Torres
Activity on the TO ASIC project
6-bit 500 MHz flash A/D converter with new design techniques
Software Defined Radio Transceiver Implementation
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
EUDET – LPC- Clermont VFE Electronics
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
All-Synthesizable 6Gbps Voltage-Mode Transmitter for Serial Link
Sample & Hold Circuits CSE598A/EE597G Spring 2006
Design for Simple Spiking Neuron Model
Presented by T. Suomijärvi
Project Meadowlark CMOS Programmable Digital Low-Pass Filter
A 12 bit 50 MS/s Dual Channel Time Domain Two Step ADC
Project Grey Wolf Digital CMOS “Memory” Game
A 12 bit 50 MS/s Dual Channel Time Domain Two Step ADC
All-Synthesizable 6Gbps Voltage-Mode Transmitter for Serial Link
Presentation transcript:

Quarterly Technical Report III for Pittsburgh Digital Greenhouse High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and Engineering Department The Pennsylvania State University

Project Goals for This Quarter Design and Fab 2nd Prototype chip Design 6 and 8 bit TIQ ADC Circuits Design 6 and 8 bit ADC Layouts Design 2nd Prototype Chip Fabricate 2nd Prototype Chip

Accomplished Project Milestones Total 10 ADCs are designed (0.18um) 6bit ADC with L=0.18um and ROM Decoder 6bit ADC with L=0.50um and ROM Decoder 6bit ADC with L=1.00um and ROM Decoder 6bit ADC with L=1.00um and FAT Decoder 6bit ADC with L=1.00um and Pipeline, ROM 6bit ADC with L=1.00um and S&H, ROM 8bit ADC with L=0.50um and ROM Decoder 8bit ADC with L=1.00um and ROM Decoder 9bit ADC with L=1.00um and ROM Decoder 9bit ADC with L=1.50um and ROM Decoder

Accomplished Project Milestones Layout Design for 10 ADCs, Complete 2nd Prototype Chip Design, Complete Chip Fabrication, Submitted: Submission date: 10/8/2001 Vendor: MOSIS with TSMC 0.18 m foundry Expected delivery date: December 2001

2nd Prototype Chip Summary Die Size: 2.64mm X 2.64mm 0.18um Digital CMOS Process Total 56,069 Transistors 84 Pins, 18 Power pins

Chip Layout

Chip Block Diagram

Chip Layout Dimension ADCs Size (W*H) um Area (mm2) 6bit 0.18um ROM 188.840 * 194.700 0.0368 6bit 0.50um ROM 188.980 * 239.500 0.0453 6bit 1.00um ROM 255.020 * 290.700 0.0742 6bit 1.00um FAT 251.850 * 272.300 0.0686 6bit 1.00um Pipe 294.530 * 290.710 0.0857 6bit 1.00um S/H 251.850 * 316.490 0.0798 8bit 0.50um ROM 202.250 * 815.550 0.1650 8bit 1.00um ROM 266.400 * 1019.780 0.2717 9bit 1.00um ROM 438.660 * 1225.100 0.5375 9bit 1.50um ROM 375.630 * 1583.500 0.5949

Layout : 6bit, L=0.18um, ROM

Layout : 6bit, L=1.00um, FAT

Layout : 8bit L=0.5 um & 9bit, L=1.00um

Block Diagram : 6bit ADCs

Block Diagram : 8bit ADCs

Block Diagram : 6bit, Pipe & S/H

Block Diagram : Pads

Simulation: Speed and Power Maximum Speed Designed with TSMC_TT parameter With linear step from 0.5V to 1.1V Other processes MOSIS parameters (5) TSMC parameters (4) Power Analog Digital

Simulation Results ADCs Max. speed (MSPS) Max.Speed (process) Analog Power (mW) 6bit 0.18um ROM 2000 1250 149.198 6bit 0.50um ROM 1667 1000 62.03 6bit 1.00um ROM 1111 667 54.47 6bit 1.00um FAT 714 36.41 8bit 0.50um ROM 181.12 8bit 1.00um ROM 151.13 9bit 1.00um ROM 476 269.53 9bit 1.50um ROM 500 400 153.89

Simulation Results Worst-case delay

Simulation Results Worst-case delay (input swing: 0 V to 1.8 V) TSMC_TT (nSec) ADCs t_comp t_gb t_rom t_out 6bit 0.18um ROM 0.084 0.358 0.893 1.030 6bit 0.50um ROM 0.237 0.521 1.200 1.320 6bit 1.00um ROM 0.540 0.837 2.170 2.330 6bit 1.00um FAT 0.784 1.670 1.690 8bit 0.50um ROM 0.240 0.525 0.935 1.040 8bit 1.00um ROM 0.538 0.836 1.940 2.070 9bit 1.00um ROM 0.549 0.932 2.610 2.780 9bit 1.50um ROM 0.984 1.380 2.900 3.030

Simulation Results Worst-case delay (input swing: 0.5 V to 1.1 V) TSMC_TT (nSec) ADCs t_comp t_gb t_rom t_out 6bit 0.18um ROM 0.122 0.395 0.969 1.090 6bit 0.50um ROM 0.338 0.623 1.470 1.580 6bit 1.00um ROM 0.867 1.160 3.750 3.890 6bit 1.00um FAT 1.110 1.960 1.980 8bit 0.50um ROM 0.340 0.624 1.210 8bit 1.00um ROM 0.868 1.170 2.810 2.950 9bit 1.00um ROM 0.896 1.280 3.540 3.720 9bit 1.50um ROM 1.660 2.060 4.720 4.860

Simulation Results DNL and INL TSMC_TT: 8bit 0.50um

Simulation Results DNL and INL (LSB) ADCs TSMC_TT TSMC_FS DNL INL 6bit 0.18um 0.003 0.023 0.226 6bit 0.50um 0.005 0.007 0.082 0.271 6bit 1.00um 0.008 0.006 0.035 0.351 8bit 0.50um 0.090 0.076 0.209 1.119 8bit 1.00um 0.084 0.077 0.199 1.450 9bit 1.00um 0.150 0.104

Simulation Results DNL and INL (LSB) ADCs T12K_LO_EPI T16X_LO_EPI DNL 6bit 0.18um 0.032 0.177 0.056 0.729 6bit 0.50um 0.115 1.016 1.689 6bit 1.00um 0.156 1.313 0.150 1.813 8bit 0.50um 0.259 4.349 0.291 6.923 8bit 1.00um 0.257 5.461 0.241 7.500 9bit 1.00um 0.436 11.501 0.446 15.338

Simulation Summary 1. High-speed with 0.18 um 2. Power consumption Approximately 50% higher speed than 0.25um Process variation problems 2. Power consumption Lower power consumption 3. Chip area Higher circuit density

URLs for The Reports Report III 2. Report II 3. Report I http://www.cse.psu.edu/~chip/pdg/report3.html Slide : http://www.cse.psu.edu/~chip/pdg/p3.ppt 2. Report II http://www.cse.psu.edu/~chip/pdg/report2.html Slide : http://www.cse.psu.edu/~chip/pdg/p2.ppt 3. Report I http://www.cse.psu.edu/~chip/pdg/rp1/report.html Slide : http://www.cse.psu.edu/~chip/pdg/rp1/p1.ppt

Publications 1. New Paper Accepted 2. Previous Paper Published “Design Method and Automation of Comparator Generation for Flash A/D Converter”, ISQED 2002 (March) 2. Previous Paper Published “A 1-GSPS CMOS Flash Analog-to-Digital Converter for System-on-Chip Applications”, WVLSI 2001 “Future-Ready Ultrafast 8bit CMOS ADC for System-on–Chip Applications”, 14th ASIC/SOC 2001

CONCLUSION Accomplished Milestones: Total 10 ADCs Designed: 6 bit, 8 bit, and 9 bit ADCs 2nd Prototype Chip Design Chip Fabrication, Submitted MOSIS 10/8/2001 0.18 m Digital CMOS Return: December 2001 Speed Increased Over 1st Proto Chip More ADCs on 2nd Proto Chip