The Chromosomal Basis of Inheritance

Slides:



Advertisements
Similar presentations
The Chromosomal Basis of Inheritance
Advertisements

CHAPTER 15.
Lecture #6 Date ________
THE CHROMOSOMAL BASIS OF INHERITANCE
The Chromosomal basis of Inheritance
Chapter 15~ The Chromosomal Basis of Inheritance
Chapter 11 Mendel & The Gene Idea.
Chapter 15~ The Chromosomal Basis of Inheritance
THE CHROMOSOMAL BASIS OF INHERITANCE
 Chapter 15~ The Chromosomal Basis of Inheritance.
Chapter 15: The Chromosomal Basis of Inheritance
The following is a map of four genes on a chromosome:
Chromosomal Theory of Inheritance
The Chromosomal Basis of Inheritance Chapter 15. Review Mitosis Meiosis Chromosome Genotype and Phenotype Mendelian Genetics.
Chapter 15: Chromosomal Basis of Inheritance AP Biology.
The Chromosomal Basis of Inheritance Chapter 15. The importance of chromosomes In 1902, the chromosomal theory of inheritance began to take form, stating:
Asexual Reproduction Vegetative propagation Binary Fission Budding
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chromosomal Basis of Inheritance Chapter 15. Most genetics work done on fruit flies (little time to observe many generations) Thomas Morgan - fruit fly.
Chapter 15 notes The Chromosomal Basis of Inheritance.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 15 Overview: Locating Genes on Chromosomes Genes – Are located on chromosomes.
Chapter 15~ The Chromosomal Basis of Inheritance ________.
Chapter 15~ The Chromosomal Basis of Inheritance.
The Chromosomal Basis of Inheritance
Chapter 15 Chromosomal Basis of Inheritance
Chromosomal Basis of Inheritance Chapter 15. Slide 2 of 36 Mendel & Chromosomes  Today we know that Mendel’s “hereditary factors” are located on chromosomes.
Chromosomal Basis of Inheritance Chapter 15. Genetic work done on fruit flies - takes little time to observe many generations. Thomas Morgan - fruit fly.
Chapter 15 The Chromosomal Basis of Inheritance. Concept 15.2: Sex-linked genes exhibit unique patterns of inheritance In humans and some other animals,
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Lecture #6 Date ________ 4 Chapter 15~ The Chromosomal Basis of Inheritance.
Chapter 15 The Chromosomal Basis of Inheritance. Fig The location of a particular gene can be seen by tagging isolated chromosomes with a fluorescent.
Chromosomal Basis of Inheritance Ch. 15. Chromosome theory of inheritance: Genes have specific loci on chromosomes and the chromosomes go through segregation.
THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15. Warm up 1.What is the probability of the following? a.) Aabb X AaBb -> Aabb b.) AaBB X AaBb -> aaBB c.)
Chapter 15 The Chromosomal Basis of Inheritance. Mendelian inheritance has its physical basis in the behavior of chromosomes  In the early 1900s biologists.
Chapter 15: The chromosomal basis of inheritance Chromosome Theory of inheritance Chromosome Theory of inheritance Genes have specific loci on chromosomes.
Chapter 15 The Chromosomal Basis of Inheritance.
Chapter 13 Raven & Johnson Chapter 15 Campbell Chromosomes & Inheritance.
4 Chapter 15~ The Chromosomal Basis of Inheritance.
Chromosomal Inheritance Chapter 15. Chromosomal basis of Inheritance Hereditary factors are located on chromosomes at specific loci - genes. Located in.
Linked Genes, Down Syndrome, and Non-disjunction
THE CHROMOSOMAL BASIS OF INHERITANCE
Chapter 15 The Chromosomal Basis of Inheritance
THE CHROMOSOMAL BASIS OF INHERITANCE
The Chromosomal Basis of Inheritance
Chromosomal Basis of Inheritance Lecture 13 Fall 2008
The Chromosomal Basis of Inheritance
The chromosomal basis of inheritance
THE CHROMOSOMAL BASIS OF INHERITANCE
Lecture #6 Date ________
Chromosomes and Inheritance
Additional Higher Level
Concept 15.3: Sex-linked genes exhibit unique patterns of inheritance
Chapter 15 Overview: Locating Genes Along Chromosomes.
THE CHROMOSOMAL BASIS OF INHERITANCE
The Chromosomal Basis of Inheritance
THE CHROMOSOMAL BASIS OF INHERITANCE
The Chromosomal basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance 24 October, 2003 Text Chapter 15
Genes and Chromosomes The behavior of chromosomes in meiosis and fertilization explains Mendel’s rules of inheritance. Genes on different chromosomes assort.
THE CHROMOSOMAL BASIS OF INHERITANCE
Chapter 15 The Chromosomal Basis of Inheritance
The Chromosomal Behavior of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
THE CHROMOSOMAL BASIS OF INHERITANCE
Aneuploidy of Sex Chromosomes
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
Presentation transcript:

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance

Chromosomal Theory of Inheritance Genes have specific loci on chromosomes Chromosomes undergo segregation & independent assortment (meiosis)

Chromosomal Linkage Scientist: Morgan Drosophilia melanogaster XX (female) vs. XY (male) Sex-linkage: genes on sex chromosome Linked genes: genes on same chromosome (usually inherited together)

Genetic recombination Crossing over: Genes that DO NOT assort independently of each other Genetic maps: More distance between genes = higher probability crossover occurs between = higher recombination frequency Linkage maps: Genetic map based on recombination frequencies Animation: Crossing Over

Figure 15.6 Some chromosomal systems of sex determination 44 + XY 44 + XX Parents 22 + X 22 + Y 22 + X or + Sperm Egg 44 + XX 44 + XY or Zygotes (offspring) (a) The X-Y system 22 + XX 22 + X (b) The X-0 system 76 + ZW 76 + ZZ Figure 15.6 Some chromosomal systems of sex determination (c) The Z-W system 32 (Diploid) 16 (Haploid) (d) The haplo-diploid system

Human sex-linkage SRY gene: on Y chromosome, triggers development of testes Fathers pass X-linked alleles to all daughters (no sons) Mothers pass X-linked alleles to both sons & daughters Sex-Linked Disorders: Color-blindness; Duchenne muscular dystropy; hemophilia X-inactivation: 2nd X chromosome in females condenses into a Barr body (e.g., tortoiseshell gene gene in cats)

Chromosomal errors, I Nondisjunction: homologous chromosomes do not separate properly during meiosis I or sister chromatids fail to separate during meiosis II Aneuploidy: chromosome number is abnormal Monosomy= missing chromosome Trisomy= extra chromosome (Down syndrome) Polyploidy= extra sets of chromosomes

Chromosomal errors, II Alterations of chromosomal structure: Deletion: removal of a chromosomal segment Duplication: repeats a chromosomal segment Inversion: segment reversal in a chromosome Translocation: movement of a chromosomal segment to another

Genomic imprinting Def: parental effect on gene expression Identical alleles may have different effects on offspring if they arrive via ovum or via sperm

You should now be able to: Explain the chromosomal theory of inheritance and its discovery Explain why sex-linked diseases are more common in human males than females Distinguish between sex-linked genes and linked genes Explain how meiosis accounts for recombinant phenotypes Explain how linkage maps are constructed Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Explain how nondisjunction can lead to aneuploidy Define trisomy, triploidy, and polyploidy Distinguish among deletions, duplications, inversions, and translocations Explain genomic imprinting Explain why extranuclear genes are not inherited in a Mendelian fashion Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings