Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Ideal Junction Theory Assumptions Ex = 0 in the chg neutral reg. (CNR)
Advertisements

Chapter 6-1. PN-junction diode: I-V characteristics
Semiconductor Device Physics Lecture 8 PN Junction Diodes: I-V Characteristics Dr. Gaurav Trivedi, EEE Department, IIT Guwahati.
OUTLINE pn junction I-V characteristics Reading: Chapter 6.1
Lecture #18 OUTLINE pn junctions (cont’d)
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
PN-junction diode: I-V characteristics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Professor Ronald L. Carter
Quasi-Fermi Levels The equilibrium EF is split into the quasi-Fermi
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
pn Junction Diodes: I-V Characteristics
Professor Ronald L. Carter
Lecture #18 OUTLINE pn junctions (cont’d)
Deviations from the Ideal I-V Behavior
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2009
Professor Ronald L. Carter
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2003
Lecture 3 OUTLINE Semiconductor Basics (cont’d) PN Junction Diodes
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 12 OUTLINE pn Junction Diodes (cont’d)
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 11 OUTLINE pn Junction Diodes (cont’d) Narrow-base diode
Lecture 13 OUTLINE pn Junction Diodes (cont’d) Charge control model
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 12 OUTLINE pn Junction Diodes (cont’d)
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 16 - Fall 2009
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 - Fall 2003
Presentation transcript:

Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ Semiconductor Device Modeling and Characterization – EE5342 Lecture 11 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

Minority carrier currents ©rlc L11-23Feb2011

Evaluating the diode current ©rlc L11-23Feb2011

Special cases for the diode current ©rlc L11-23Feb2011

Ideal diode equation Assumptions: Current dens, Jx = Js expd(Va/Vt) low-level injection Maxwell Boltzman statistics Depletion approximation Neglect gen/rec effects in DR Steady-state solution only Current dens, Jx = Js expd(Va/Vt) where expd(x) = [exp(x) -1] ©rlc L11-23Feb2011

Ideal diode equation (cont.) Js = Js,p + Js,n = hole curr + ele curr Js,p = qni2Dp coth(Wn/Lp)/(NdLp) = qni2Dp/(NdWn), Wn << Lp, “short” = qni2Dp/(NdLp), Wn >> Lp, “long” Js,n = qni2Dn coth(Wp/Ln)/(NaLn) = qni2Dn/(NaWp), Wp << Ln, “short” = qni2Dn/(NaLn), Wp >> Ln, “long” Js,n << Js,p when Na >> Nd ©rlc L11-23Feb2011

Diffnt’l, one-sided diode conductance Static (steady-state) diode I-V characteristic IQ Va VQ ©rlc L11-23Feb2011

Diffnt’l, one-sided diode cond. (cont.) ©rlc L11-23Feb2011

Charge distr in a (1- sided) short diode dpn Assume Nd << Na The sinh (see L12) excess minority carrier distribution becomes linear for Wn << Lp dpn(xn)=pn0expd(Va/Vt) Total chg = Q’p = Q’p = qdpn(xn)Wn/2 Wn = xnc- xn dpn(xn) Q’p x xn xnc ©rlc L11-23Feb2011

Charge distr in a 1- sided short diode dpn Assume Quasi-static charge distributions Q’p = Q’p = qdpn(xn)Wn/2 ddpn(xn) = (W/2)* {dpn(xn,Va+dV) - dpn(xn,Va)} dpn(xn,Va+dV) dpn(xn,Va) dQ’p Q’p x xn xnc ©rlc L11-23Feb2011

Cap. of a (1-sided) short diode (cont.) ©rlc L11-23Feb2011

General time- constant ©rlc L11-23Feb2011

General time- constant (cont.) ©rlc L11-23Feb2011

General time- constant (cont.) ©rlc L11-23Feb2011

Effect of carrier recombination in DR The S-R-H rate (tno = tpo = to) is ©rlc L11-23Feb2011

Effect of carrier rec. in DR (cont.) For low Va ~ 10 Vt In DR, n and p are still > ni The net recombination rate, U, is still finite so there is net carrier recomb. reduces the carriers available for the ideal diode current adds an additional current component ©rlc L11-23Feb2011

Effect of carrier rec. in DR (cont.) ©rlc L11-23Feb2011

Effect of non- zero E in the CNR This is usually not a factor in a short diode, but when E is finite -> resistor In a long diode, there is an additional ohmic resistance (usually called the parasitic diode series resistance, Rs) Rs = L/(nqmnA) for a p+n long diode. L=Wn-Lp (so the current is diode-like for Lp and the resistive otherwise). ©rlc L11-23Feb2011

High level injection effects Law of the junction remains in the same form, [pnnn]xn=ni2exp(Va/Vt), etc. However, now dpn = dnn become >> nno = Nd, etc. Consequently, the l.o.t.j. reaches the limiting form dpndnn = ni2exp(Va/Vt) Giving, dpn(xn) = niexp(Va/(2Vt)), or dnp(-xp) = niexp(Va/(2Vt)), ©rlc L11-23Feb2011

High level inj effects (cont.) ©rlc L11-23Feb2011

Summary of Va > 0 current density eqns. Ideal diode, Jsexpd(Va/(hVt)) ideality factor, h Recombination, Js,recexp(Va/(2hVt)) appears in parallel with ideal term High-level injection, (Js*JKF)1/2exp(Va/(2hVt)) SPICE model by modulating ideal Js term Va = Vext - J*A*Rs = Vext - Idiode*Rs ©rlc L11-23Feb2011

Diode Diffusion and Recombination Currents ©rlc L11-23Feb2011

Diode Diffusion and Recombination Currents – One Sided Diode ©rlc L11-23Feb2011

Plot of typical Va > 0 current density equations ln(J) data Effect of Rs Vext VKF ©rlc L11-23Feb2011

References *Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. **MicroSim OnLine Manual, MicroSim Corporation, 1996. ©rlc L11-23Feb2011