William & Mary / Glasgow

Slides:



Advertisements
Similar presentations
What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Advertisements

Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
(and some things about the weak interaction)
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
P461 - particles III1 EM Decay of Hadrons If a photon is involved in a decay (either final state or virtual) then the decay is at least partially electromagnetic.
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
A. Švarc Rudjer Bošković Institute, Zagreb, Croatia INT-09-3 The Jefferson Laboratory Upgrade to 12 GeV (Friday, November 13, 2009) Continuum ambiguities.
Lecture 10: Inelastic Scattering from the Proton 7/10/2003
What do we know about the Standard Model? Sally Dawson Lecture 2 SLAC Summer Institute.
HL-ch.3 Sept. 2002Student Seminar Subatomic Physics1 Seminar Subatomic Physics Chapter 3: New developments in hadronic particle production Nucleon resonances.
UK Hadron Physics D. G. Ireland 10 October 2014 NuPECC Meeting, Edinburgh.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
Proton-Proton Elastic Scattering at RHIC
M. Cobal, PIF 2003 Resonances - If cross section for muon pairs is plotted one find the 1/s dependence -In the hadronic final state this trend is broken.
Two particle states in a finite volume and the multi-channel S- matrix elements Chuan Liu in collaboration with S. He, X. Feng Institute of Theoretical.
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Oct 2006, Lectures 6&7 Nuclear Physics Lectures, Dr. Armin Reichold 1 Lectures 6 & 7 Cross Sections.
Robert Edwards Jefferson Lab Creutz-Fest 2014 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAAAA 1983 HADRONS.
Zhi-Yong Zhou Southeast university Zhangjiajie 周智勇 东南大学.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Physics based MC generators for detector optimization Integration with the software development (selected final state, with physics backgrounds event generator)
L.D. Blokhintsev a, A.N. Safronov a, and A.A. Safronov b a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia b Moscow State.
Partial Wave Analysis What is it Relation to physical properties Properties of the S-matrix Limitation and perspectives Examples : peripheral production.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
ANALYTIC APPROACH TO CONSTRUCTING EFFECTIVE THEORY OF STRONG INTERACTIONS AND ITS APPLICATION TO PION-NUCLEON SCATTERING A.N.Safronov Institute of Nuclear.
Prof. M.A. Thomson Michaelmas Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 3 : Interaction by Particle Exchange and QED X X.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Lecture 2 - Feynman Diagrams & Experimental Measurements
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
Lecture 4 – Quantum Electrodynamics (QED)
Chiral Extrapolations of light resonances
Generalities of the reaction approaches
Lecture 7 Parity Charge conjugation G-parity CP FK7003.
Hadron excitations as resonant particles in hadron reactions
The Strong Force: NN Interaction
Extracting h-neutron interaction from g d  h n p data
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
Handout 3 : Interaction by Particle Exchange and QED
EBAC-DCC analysis of world data on pN, gN, and N(e,e’) reactions
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) 2016 JAEA/ASRC Reimei.
Double Ks0 Photoproduction off the proton at CLAS
Countries that signed the nuclear arms treaty with Iran
Alfred Švarc Rudjer Bošković Institute, Zagreb, Croatia
Elastic Scattering in Electromagnetism
Lecture 04 - Hadrons Quarks multiplets Hadron decays Resonances
Scattering Cross Sections (light projectile off heavy target)
Recent results on light hadron spectroscopy at BES
Announcements Exam Details: Today: Problems 6.6, 6.7
Excited State Spectroscopy from Lattice QCD
Scattering in QM Consider a beam of particles scattering in potential V(r): NOTE: natural units The scattering rate is characterized by the interaction.
Section IX - Quark Model of Hadrons
p+p p+p p-n p-n p-p p-p Consider the scattering reactions:
William & Mary / Glasgow
Section VII - QCD.
Excited State Spectroscopy from Lattice QCD
Duality in electron scattering:
Lecture 2: Invariants, cross-section, Feynman diagrams
New Results on 0 Production at HERMES
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) YITP Workshop on.
Regge Description of
B. El-Bennich, A. Furman, R. Kamiński, L. Leśniak, B. Loiseau
Current Status of EBAC Project
EBAC-DCC combined analysis of world data on pN and gN processes
Lecture 12 Halzen & Martin Chapter 6
Presentation transcript:

William & Mary / Glasgow Michael Pennington William & Mary / Glasgow Thursday June 1st, 2017

q q q ( i D - m ) q - G G q = QCD q=u,d,s, c,b,t 1 4

q q g

q q q g

q q q q g

Can experiment distinguish between q q q q g Can experiment distinguish between these configurations ?

uc du c q

Light Meson Spectrum negative parity positive parity Mass (GeV) ` JPC 2.5 2.0 1.5 Mass (GeV) j 1.0 h ` w r h isoscalar isovector 0.5 p JPC 0++ 1++ 1+- 2++ 4++ 0-+ 1-- 2-+ 3--

0-+ 1-- Meson spectrum S = 0, 1 L=0 f w K*0 K*+ K*- r- r+ r0   K0 - + 0 0-+ 1-- s1 s2 L q S = 0, 1 1-- 0-+ L=0

S r f2 r3 p Events/20 MeV (2l +1) fl (s) Pl ( z ) (s,z) = M(pp) GeV F 0.2 0.6 1.0 1.4 1.8 2.2 35 30 25 20 15 10 5 40 Events/20 MeV M(pp) GeV r r3 f2 N B R p (s,z) (2l +1) fl (s) Pl ( z ) l =0 S = F CERN-Munich: Grayer et al.

. J r5 f4 r3 f2 r K5* K4* p K3* K2* K* M2 ideally mixed 5 4 3 2 1 1 2 3 4 5 6 GeV2 r r3 f2 f4 K* K3* K2* K4* 1 2 3 4 5 r5 K5* M2 ideally mixed N B R p exchange

. J 1 2 3 4 5 6 GeV2 r r3 f2 f4 K* K3* K2* K4* 1 2 3 4 5 r5 K5* M2 . q . . . . . . . . . . . . . g . . . . . . . . . . . .

. J 1 2 3 4 5 6 GeV2 r r3 f2 f4 K* K3* K2* K4* 1 2 3 4 5 r5 K5* M2 . q . . . . . . . . . . . . . . . . . . . . . . . . .

Hadron States E x Breit-Wigner M2 – s - iMG 1 s = E2

COMPASS @ CERN 2004 1- + M(3p) GeV

HUGS Hadron Spectrum: window on confinement Step One: spectrum of baryons, mesons quarks and QCD Step Two: tools for discovery, experiment and Amplitude Analyses Step Three: conserving probability and respecting causality Step Four: tools for discovery, S-matrix theory 2 Step Five: what’s new, computing QCD Step Six: what’s to come, what to watch for HUGS

S(p1,p2,...,pj; s1,s2…,sj; q1,…,qk; t1,…,tk) …. …... 2 2 2 3 3 3 …

Conservation of probability Unitarity Sum of probabilities = S Pi = 1 i

S S = I S = I + 2i T T T T – T = 2i r r Unitarity rn = ½ rn 2kn s  = T = transition matrix = diagonal matrix of phase-space factors T T T – T = 2i r matrix relation diagonalized by amplitudes of definite angular momentum

T T T – T = 2i Im T = T* r T r r is phase space for intermediate state Unitarity T T T – T = 2i r matrix relation diagonalized by amplitudes of definite angular momentum then Im T = T* r T where T has definite quantum numbers r is phase space for intermediate state

S Unitarity Im rn = Amplitude with definite JPC = 2kn s  = We call the partial waves for channel i j, Tij(s) the ij th element of the T-matrix with definite IJPC

S Unitarity Im rn Amplitude with definite JPC = A B C D 2kn s  We call the partial waves for channel i j, Tij(s) the ij th element of the T-matrix with definite IJPC

Unitarity Im p Im T11(s) = r1(s) T11*(s) T11(s) r1 = Amplitude with definite JPC Im = p Im T11(s) = r1(s) T11*(s) T11(s) 1 = pp r1 2k1 s  = s - 4m12 strictly for s < (4mp)2 in practice s < 1 GeV2

Unitarity Im p Im T11(s) = r1(s) T11*(s) T11(s) r1 = Amplitude with definite JPC Im = p Im T11(s) = r1(s) T11*(s) T11(s) 1 = pp T11 = | T11 | eid r1 1 let sin d = | T11 | 2k1 T11 = sin d eid r1 1 r1 =  s

Unitarity PC definite J ri = ki / E p = Im å p K = + 1 = pp 2 = KK

Unitarity Im T11(s) = r1(s) | T11(s) |2 + r2(s) | T12(s) |2 + … for each J, P, C, I, … Im T11(s) = r1(s) | T11(s) |2 + r2(s) | T12(s) |2 + … T11 = sin d eid r1 1

X Unitarity d phase shift h inelasticity h=1 elastic for each J, P, C, I, … Im T11(s) = r1(s) | T11(s) |2 + r2(s) | T12(s) |2 + … X T11 = sin d eid r1 1 d phase shift h inelasticity T11 = ( h e2id - 1 ) 2ir1 1 h=1 elastic

Unitarity d phase shift h inelasticity tl r1 T11 = ( h e2id - 1 ) for each J, P, C, I, … d phase shift h inelasticity r1 T11 = ( h e2id - 1 ) 2i 1 Im tl Re tl h=1 elastic tl tl

Unitarity d phase shift h inelasticity tl pK pK for each J, P, C, I, … d phase shift h inelasticity r1 T11 = ( h e2id - 1 ) 2i 1 Im tl tl h=1 elastic pK pK I = 1/2 S-wave example Re tl

Unitarity PC definite J ri = ki / E = p Im å K p K = + 1 = pp 2 = KK

Elastic Unitarity - i r1 Im T11(s) = r1(s) T11*(s) T11(s) Im - r1 Re K11 where K is real for real s > 4m2 T11 1 = K11 - i r1 T11 1 – i r1 K11 K11 = K11 = tan d r1 1

Elastic Unitarity K11 T11 = K11 = tan d r1 1 – i r1 K11 1 – i r1 K11 1 Physical particles are poles of the S-Matrix on nearby unphysical sheet (s). These are given by the zeros of 1 – i r1 K11 The K-matrix has no physical significance (except in models). It is just a convenient way to implement unitarity. In particular poles in K are not poles of the S-matrix K can involve sums of poles and polynomials. It’s just a matter of economy.

Elastic Unitarity K11 T11 = K11 = tan d r1 1 – i r1 K11 K11 = T11 = 1 Example : K11 = M2 - s M G T11 = M2 - s M G - i r M G Breit-Wigner form The K-matrix has no physical significance (except in models). It is just a convenient way to implement unitarity. In particular poles in K are not poles of the S-matrix

analyticity & complex energy plane Im E Re E resonance pole why sheets? see later

Elastic Unitarity & Analyticity 1 | T11 |2 * = Im - r1 T11 1 = Re K11 where K is real for real s > 4m2 T11 1 = K11 - i r1 = r1  s - 4m12 s = r1  s - 4m12 s = r1  s - 4m12 s T11 1 = K11 r1 r1+1 r1-1 ( ) ln p + corrects the analyticity on right hand cut ONLY

Energ = r  s - 4mK2 s Real KK Imaginary E (GeV)

Energ KK Real Real Imaginary E (GeV) Chew-Mandelstam function K-1

Multi-channel Unitarity Amplitude with definite JPC k Im i i i i j j j = i j j 1 = pp 2 = KK S k Im Tij(s) = rk(s) Tik*(s) Tkj(s) Im T11 = r1 T11 T11 + r2 T12 T21 * Im T12 = r1 T11 T12 + r2 T12 T22 Im T22 = r1 T21 T12 + r2 T22 T22

Multi-channel Unitarity Amplitude with definite JPC Im T11 = r1 T11 T11 + r2 T12 T21 * Im T12 = r1 T11 T12 + r2 T12 T22 Im T22 = r1 T21 T12 + r2 T22 T22 1 = pp 2 = KK T11 1 = Im - r1 Im T -1 = - r 1-channel : n-channel : r1 r2 r3 r4 r =

Multi-channel Unitarity Amplitude with definite JPC Im T11 = r1 T11 T11 + r2 T12 T21 * Im T12 = r1 T11 T12 + r2 T12 T22 Im T22 = r1 T21 T12 + r2 T22 T22 1 = pp 2 = KK T11 1 = Im - r1 Im T -1 = - r 1-channel : n-channel : Re T - 1 = K - 1 T - 1 = K - 1 - i r

Multi-channel Unitarity Amplitude with definite JPC Im T11 = r1 T11 T11 + r2 T12 T21 * Im T12 = r1 T11 T12 + r2 T12 T22 Im T22 = r1 T21 T12 + r2 T22 T22 1 = pp 2 = KK 2-channel : = T11 K11 – i r2 det K D T12 K12 T22 K22 – i r1 det K D = 1 – i r1 K11 – i r2 K22 – r1 r2 det K where

S Unitarity Im Amplitude with definite JPC = n n What happens when the final state particles are hadrons, but the incoming particles are not hadrons, eg e+e- , gg Sum n only need include hadrons as initial state particles are suppressed by powers of a

Unitarity Im p p p p p p Im F1 (s) = r1(s) F1*(s) T11(s) Amplitude with definite JPC example p p e+ e+ p Im = p 1 = pp e- p e- p Im F1 (s) = r1(s) F1*(s) T11(s) = r1(s) F1 (s) T11 (s) *

Unitarity Im p p p p p p Im F1 (s) = r1(s) F1*(s) T11(s) Amplitude with definite JPC example p p e+ e+ p Im = p 1 = pp e- p e- p Im F1 (s) = r1(s) F1*(s) T11(s) = r1(s) F1 (s) T11 (s) * T11 = sin d eid r1 1 recall F1 = | F1 | eij let

Unitarity Im j = d (+np) j = d (+np) p p p p p p Amplitude with definite JPC example p p e+ e+ p Im = p 1 = pp e- p e- p Im F1 (s) = r1(s) F1*(s) T11(s) = r1(s) F1 (s) T11 (s) * T11 = sin d eid r1 1 recall F1 = | F1 | eij let sin j = sin d sin j = sin d sin j = sin d j = d (+np) Watson’s final state interaction theorem: j = d (+np) Watson’s final state interaction theorem:

r in pp and e+e-

Multi-channel Unitarity Amplitude with definite JPC k Im i = i 1 = pp 2 = KK Im Fi (s) = rk(s) Fk*(s) Tki (s) S k Im F1 = r1 F1 T11 + r2 F2 T21 * Im F2 = r1 F1 T12 + r2 F2 T22 e.g. F ( gg hadron channel i )

Multi-channel Unitarity real coupling functions PC definite J real coupling functions g p g p Im å = g p g p on right hand cut g p g p p K = + + p K g 1 = pp 2 = KK p g p

analyticity & complex energy plane Im E Re E resonance pole Universal: process independent

Landscape to be explored

Unitarity Amplitude with definite JPC n Im = S n rn 2kn s  =

Unitarity Im Im T11(s) = r1(s) T11*(s) T11(s) Amplitude with definite JPC Im = Im T11(s) = r1(s) T11*(s) T11(s) 1 = pp for equal masses = r  s - 4m2 s m1 r1

f(s) = sth – s  f(s) = sth – s  Consider Consider sth = 4m2 if masses equal in complex s-plane Im s s Re s

f(s) = sth – s  f(s) = sth – s  Consider Consider in complex s-plane experiment X sth

Consider f(s) = sth – s  Consider f(s) = sth – s  B A s s2 X sth C D

Consider f(s) = sth – s  Consider f(s) = sth – s  B A s 2J X sth C D

 f(s) = sth – s  f(s) = sth – s  s = sth + s2 e f(s) = - s2 e Consider f(s) = sth – s  Consider f(s) = sth – s  A s s2 2J X X sth s = sth + s2 e 2iJ point A let -1 = e ip f(s) = - s2 e 2iJ  i(p/2+J) iJ = i s e = s e

 f(s) = sth – s  f(s) = sth – s  s = sth + s2 e f(s) = - s2 e Consider f(s) = sth – s  Consider f(s) = sth – s  B s s2 p - 2J X sth s = sth + s2 e i(p - 2J) point B f(s) = - s2 e i(p - 2J) i(p-J) -iJ = - s e = s e 

 f(s) = sth – s  f(s) = sth – s  s = sth + s2 e f(s) = - s2 e Consider f(s) = sth – s  Consider f(s) = sth – s  s = sth + s2 e i(p + 2J) point C s p + 2J X X sth s2 C f(s) = - s2 e i(p + 2J) i(p+J) +iJ = - s e = s e 

 f(s) = sth – s  f(s) = sth – s  s = sth + s2 e f(s) = - s2 e Consider f(s) = sth – s  Consider f(s) = sth – s  i(2p - 2J) s = sth + s2 e point D s 2p - 2J X s2 D f(s) = - s2 e i(2p - 2J) i(3p/2-J) -iJ = -i s e = s e 

Consider f(s) = sth – s  B A s 2J X sth C D

f(s) = sth – s  f(s) = sth – s  - s e i s e - s e - s e - i s e Consider f(s) = sth – s  Consider f(s) = sth – s  B A s -iJ - s e +iJ +iJ i s e X sth +iJ - s e +iJ - s e -iJ - i s e C D note f (s*) = f *(s) f (s) is real analytic

f(s) = sth – s  f(s) = sth – s  - s e i s e - s e - s e - i s e -iJ Consider f(s) = sth – s  Consider f(s) = sth – s  B A s -iJ - s e +iJ +iJ i s e X sth +iJ - s e +iJ - s e -iJ - i s e C D let’s see what happens when J 0

f(s) = sth – s  f(s) = sth – s  - s - i s + i s Consider Consider s A B s + i s - s X X sth - i s C D let’s see what happens when J 0

f(s) = sth – s  f(s) = sth – s  - s - i s + i s Consider Consider s A B s + i s - s X X cut sth - i s C D

Consider f(s) = sth – s  Consider f(s) = sth – s  Im f Im s Re s

Landscape to be explored

S i.e. Pi = 1 Scattering amplitudes exist in a world of cuts unitarity This is a consequence of the fundamental property of the conservation of probability i.e. Pi = 1 S i unitarity

f(s) = sth – s  f(s) = sth – s  - s e i s e - s e - s e - i s e -iJ chose -1 = e ip Sheet I Consider f(s) = sth – s  Consider f(s) = sth – s  B A s -iJ - s e +iJ +iJ i s e X sth +iJ - s e +iJ - s e -iJ - i s e C D

f(s) = sth – s  f(s) = sth – s  - s e - i s e - s e - s e -iJ choose -1 = e -ip Sheet II Consider f(s) = sth – s  Consider f(s) = sth – s  B A s -iJ + s e +iJ - s e - i s e 2J X X sth +iJ - s e +iJ + s e +iJ - s e -iJ + i s e C D

f(s) = sth – s  f(s) = sth – s  - s e i s e - s e - i s e - s e Consider f(s) = sth – s  Sheet I Consider f(s) = sth – s  Sheet II B A s -iJ - s e +iJ i s e -iJ + s e +iJ - s e - i s e X sth +iJ + s e +iJ - s e -iJ + i s e +iJ - s e +iJ - s e -iJ - i s e C D

analyticity & complex energy plane Im E Re E

analyticity & complex energy plane Im E +iJ i s e +iJ - s e - i s e +iJ - s e -iJ - i s e Re E +iJ - s e -iJ + i s e f(s) = sth – s  connections illustrated with where s2 = s – sth

analyticity & complex energy plane Im E Re E resonance pole resonance pole resonance pole

S Complex s-plane Im = Im s unitarity Re s for each I, J, l n Im s unitarity right hand cut Re s

Complex s-plane Im s Im s unitarity Re s Re s for each I, J, l t u left hand cut right hand cut Re s Re s

ds dW Scattering Amplitude, (s,t) for spinless particles J j describes dependence on energy and J ds dW k J j dW dW = d(cos J) dj p ds dW = K(s) | (s,z) |2 F K(s) = k 64p2 p s spinless flux factor depends on s & spin

Scattering Amplitude, (s,t) for spinless particles describes dependence on energy and J recall dW = d(cos J) dj let z = cos J ds d z = 2p K(s) | (s,z) |2 F K(s) = k 64p2 p s spinless S (s,z) (2l +1) fl (s) Pl ( z ) F = 16p l =0 fl (s) partial waves

S S Partial waves l l fl S P D G … l (2l +1) fl (s) Pl ( z ) (s,z) = notation:

stot = Im Fel (s, J=0) Unitarity optical theorem  s elastic amplitude 1 Im Fel (s, J=0) elastic amplitude Total cross-section for AB everything is related to the forward amplitude for AB AB