Presentation is loading. Please wait.

Presentation is loading. Please wait.

William & Mary / Glasgow

Similar presentations


Presentation on theme: "William & Mary / Glasgow"— Presentation transcript:

1 William & Mary / Glasgow
Michael Pennington William & Mary / Glasgow Wednesday May 31st, 2017

2 HUGS Hadron Spectrum: window on confinement
Step One: spectrum of baryons, mesons quarks and QCD Step Two: tools for discovery, experiment and Amplitude Analyses Step Three: conserving probability and respecting causality Step Four: tools for discovery, S-matrix theory 2 Step Five: what’s new, computing QCD Step Six: what’s to come, what to watch for HUGS

3 QCD asymptotic freedom confinement r (m) strong coupling 1 10
strong QCD 1 10 -15 r (m) strong coupling pQCD strong QCD

4 Resonances in QCD 1 = q ( i D - m ) q - G G q 4 QCD q=u,d,s, c,b,t

5 Resonances in QCD q q 1 = q ( i D - m ) q - G G q 4 QCD q=u,d,s, c,b,t

6 Theme: what are the relevant degrees of freedom?

7 Theme: what are the relevant degrees of freedom?

8 Confinement Physics

9 accurate modelling precision research precision tools QCD

10 S Basic tools of -matrix theory relativity causality
conservation of probability causality

11 Hadron Physics A hadrons } B

12 S(p1,p2,...,pj; s1,s2…,sj; q1,…,qk; t1,…,tk)
…. …...

13 pN scattering E (GeV) s (mb) p- p p+ p p+p p N p N energy E

14 DELTA RESONANCE DISCOVERED!
MARCH 12, 1952 DELTA RESONANCE DISCOVERED! Cross-section for positive pions on hydrogen peaks above 1200 MeV positive pion MeV negative .

15 Baryon resonances (N*s and D*s)
p- p X p+ p P33(1232) s (mb) E (GeV) 15

16 Hadron States E M G ~ 1/ t lifetime G/2

17 Hadron States E x Breit-Wigner M2 – s - iMG 1 s = E2

18 pN scattering E (GeV) s (mb) p- p p+ p p+p p N p N energy E p N L2I 2J

19 Baryon resonances (N*s and D*s)
s (mb) W (GeV) p- p X p+ p P33(1232) S11(1650) P31(1620) S11(1535) D13(1520) P11(1440) D15(1675) F15(1680) D33(1700) P13(1720) P31(1910) F35(1905) F37(1950) G17(2190) H19(2220) G19(2250) H31(2420) 19

20 Spectrum of hadrons

21 pN pN scattering ds/dW p p p p p p p n 1234 MeV 1449 MeV 1678 MeV
q p p p p + - p p p n 1234 MeV 1449 MeV 1678 MeV 1900 MeV

22 pN pN scattering P p p p p p p p n 1234 MeV 1449 MeV 1678 MeV 1900 MeV
q p p p p + - p p p n P 1234 MeV 1449 MeV 1678 MeV 1900 MeV

23 Relativistic kinematics
p4 p3 p1 p2 A C B D 2-to-2 scattering

24 C A B D Center of momentum frame: J, j p3 p1 p2 p4
z x y D p4 p1 = ( E1, 0, 0, p ) p2 = ( E2, 0, 0, -p )

25 C A B D Center of momentum frame: J, j p3 p1 p2 p4
z x y D p4 p3 = ( E3, q sinJ cosj, q sinJ sinj, q cos J ) p4 = ( E4, -q sinJ cosj, -q sinJ sinj, -q cos J )

26 E1 = + E2 = - Center of momentum frame: h = c = 1 (m12 – m22)
 s E2 = p12 = m12, p22 =m22 s = (p1 + p2)2 = (E1 + E2)2 4s p2 = s2 – 2 (m12 + m22) s + (m12 – m22)2 p1 = ( E1, 0, 0, p ) p2 = ( E2, 0, 0, -p )

27 C A B D Center of momentum frame: J p3 p1 p2 p4
z x D p4 p3 = ( E3, q sinJ, 0 , q cos J ) p4 = ( E4, -q sinJ, 0 , -q cos J )

28 Center of momentum frame:
s = (p1 + p2)2 = (p3 + p4)2 t = (p1 – p3)2 = (p4 - p2)2 u = (p1 – p4)2 = (p3 - p2)2 s + t + u = m12 + m22 + m32 + m42 t = m12 + m32 -2(E1 E3 –p q cos J) = m22 + m42 -2(E2 E4 –p q cos J) p1 = ( E1, 0, 0, p ) p2 = ( E2, 0, 0, -p ) p3 = ( E3, q sinJ, 0 , q cos J ) p4 = ( E4, -q sinJ, 0 , -q cos J )

29 Center of momentum frame:
simplest case all masses equal, m p = q p1 = (  s /2, 0,0,p) p2 = ( /2, 0,0, -p) p3 = (  s /2, p sin J,0, p cos J) p4 = ( /2, -p sin J,0, -p cos J) s = 4 (p2 + m2) t = -2 p2 (1 – cos J) u = -2 p2 (1 + cos J)

30 scattering region AB CD s-channel Js
Physical region: p2 > 0, < Js < p s = 4 (p2 + m2) t = -2p2 (1 – cos Js ) Recall: if all masses equal (m) s > 4m2

31 ds dW Scattering Amplitude, (s,t) for spinless particles J j
describes dependence on energy and J ds dW q J j dW dW = d(cos J) dj p ds dW = K(s) | (s,z) |2 F K(s) = q 64p2 p s spinless flux factor depends on s & spin

32 Scattering Amplitude, (s,t) for spinless particles
describes dependence on energy and J recall dW = d(cos J) dj let z = cos J ds d z = 2p K(s) | (s,z) |2 F (s,z) (2l +1) fl (s) Pl ( z ) l =0 S = F fl (s) partial waves

33 S S Partial waves Pl (z) are the corresponding eigenfunctions s l
(s,z) (2l +1) fl (s) Pl ( z ) l =0 S = F l are the eigenvalues of angular momentum Pl (z) are the corresponding eigenfunctions

34 S S Partial waves fl (s) s l (2l +1) fl (s) Pl ( z ) (s,z) = (s,J) F
with z = cos J fl (s) J F (s,J) Pl (cos J )

35 Legendre polynomials d l j dz Pl (z) Pj (z) = 0 if l = j 2
P0(z) = 1 P1(z) = z P2(z) = (3z2 - 1)/2 P3(z) = (5z3 - 3z)/2 P4(z) = (35z4 –30 z2 + 3)/8 Pl (1) = 1 Pl (-z) = (-1)l Pl (z) dz Pl (z) Pj (z) = 0 if l = j / -1 +1 dz Pl (z) Pj (z) = -1 +1 2 2l + 1 d l j

36 Pl (z) z Legendre polynomials P0(z) =1 P1(z) = z P2(z) = (3z2-1)/2
1 2 3 4 Pl (z) z 0.8 0.6 0.4 0.2 -0.2 -0.4 -0.6 -0.8 -1 P0(z) =1 P1(z) = z P2(z) = (3z2-1)/2 P3(z) = (5z3-3z)/2 Pl (1) = 1 Pl (-z) = (-1)l Pl (z)

37 S S Partial waves l l fl S P D G … l (2l +1) fl (s) Pl ( z ) (s,z) =
notation:

38 Spin analysis M 1 q M 2 cos J L = 0 L = 1 L = 2 ds/dW

39 pN pN scattering ds/dW p p p p p p p n 1234 MeV 1449 MeV 1678 MeV
q p p p p + - p p p n 1234 MeV 1449 MeV 1678 MeV 1900 MeV

40 ds/dW p 0p q (deg.)

41 S p 0p q (deg.)

42 S p 0p A N M1 M2 B L2I 2J q (deg.)

43 pN scattering W (GeV) s (mb) p- p p+ p p+p p N p N L2I 2J

44 p p p pN scattering L2I 2J N N N I = 1/2, 3/2 S = 1/2
J = L + S = L - ½, L + ½ p N p p L2I 2J L N N

45 pN amplitudes Isospin 1/2 Imaginary T SAID: Workman et al

46 q q q ( i D - m ) q - G G q = QCD q=u,d,s, c,b,t 1 4

47 S31 F15 D15 P31 S11 P33 D13 P11 F35 D35

48 N*(1520) D13 D13

49 Hadron States Breit-Wigner 1 s = E2 M2 – s - iMG
x Breit-Wigner M2 – s - iMG 1 s = E2 definite quantum numbers J, P, C, I, ….

50 s = E2 Breit-Wigner 1 M2 – s - iMG 1 M2 (s) – s x
merely an approximation valid in the region of the pole M2 (s) – s 1

51 S Scattering Amplitude, (s,t) for spinless particles
ds d z = 2p K(s) | (s,z) |2 F with z = cos J (s,z) (2l +1) fl (s) Pl ( z ) l =0 S = F Is F (s,z) and its partial wave decomposition unique?

52 S Scattering Amplitude, (s,t) for spinless particles
ds d z = 2p g(s) | (s,z) |2 F with z = cos J (s,z) (2l +1) fl (s) Pl ( z ) l =0 S = F Is F (s,z) and its partial wave decomposition unique? Clearly can multiply F (s,z) by a phase at every energy and it describes the same ds/dz

53 S Scattering Amplitude, (s,t) for spinless particles
ds d z = 2p K(s) | (s,z) |2 F with z = cos J (s,z) (2l +1) fl (s) Pl ( z ) l =0 S = F Is F (s,z) and its partial wave decomposition unique? Clearly can multiply F (s,z) by a phase at every energy and it describes the same ds/dz For an elastic process, imaginary part is directly proportional to the total cross-section, so phase in the forward direction (z=1) can be fixed from experiment

54 stot = Im Fel (s, J=0) Unitarity optical theorem  s elastic amplitude
1 Im Fel (s, J=0) elastic amplitude Total cross-section for AB everything is related to the forward amplitude for AB AB Measuring total cross-section determines phase of elastic scattering amplitude

55 how to find the amplitudes
q (deg.) ds/dcos q absorb flux factor into amplitude

56 how to find the amplitudes
q (deg.) ds/dcos q absorb flux factor into amplitude

57 how to find the amplitudes
q (deg.) ds/dcos q absorb flux factor into amplitude 2J Truncate j < 2J

58

59

60 let z = cos 

61 let z = cos 

62 F(s,z) how to find the amplitudes exp (i ) 2J amplitudes
Barrelet ambiguity

63 F(s,z) how to find the amplitudes exp (i ) 2J amplitudes
continuum ambiguity

64 Barrelet ambiguity cos  D P S

65 Barrelet ambiguity cos  D P S

66 Barrelet zeros Im zi continuity

67 Barrelet zeros dynamics and zeros, dynamics and poles

68

69 Hadroproduction M1 p R M2 exchange M(K) GeV N B

70 Hadroproduction p R M1 exchange M2 N B


Download ppt "William & Mary / Glasgow"

Similar presentations


Ads by Google