Plant Responses to Internal and External Signals

Slides:



Advertisements
Similar presentations
Plant Response to Signals
Advertisements

Plant Control Systems It’s a Hormonal Thing!.
Control Systems in Plants
PLANT RESPONSE. Tropisms Plant growth toward or away from a stimulus Gravitropism gravity is “+” in roots and “-” in shoots – Plastids containing starch.
Behavior of Plants in Response to Hormones
Control Systems in Plants
Plant Response Signal Reception/Transduction Pathways… the plant response to external stimuli determines the internal patterns of development – Etiolation.
Plant Growth Regulators
Plant Growth in Angiosperms Plants have hormones: Substances produced in one part of body, transported to another part where it has a physiological effect.
1. reception – signal molecule lands on receptor 2. Transduction – relay molecules called second messengers 3. Response – activation of cellular response.
Concept 39.2: Plant hormones help coordinate growth, development, and responses to stimuli Plant hormones are chemical signals that modify or control one.
Plant Responses to Internal and External Signals.
Plant Tropisms and Hormonal control
Chapter 39 Plant Responses. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings I. Plant hormones Chemical signals that.
Plants.
Plant Hormones.
Plant Hormones Ch. 39. I. Plant Hormones- A compound produced by one part of the plant Hormones- A compound produced in one area of an organism and.
How do plants respond to their environment? Plants can’t move or see! Plants respond to stimuli Physical factors ? Chemical factors.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Monocot or Dicot?
Control Systems in Plants
Plant Responses to Internal & External Stimuli
The Chapter 31 and 32 homework is due on April 7 at 11:59 pm. (Chapter 32 only includes pages ) The Chapter 31 and 32 Test will be on April 8 th.
Figure 39.0 A grass seedling growing toward a candle’s light
 Plant Responses to Internal and External Signals Chapter 39.
Plant Responses to Internal and External Signals Chapter 39.
Control Systems in Plants. Plant Hormones What is a Plant hormone? Compound produced by one part of an organism that is translocated to other parts where.
Plant Responses Chapter 39.
1 Thought Question Plants can’t fight or hide or run away, so how do they adapt to a changing environment?
Plant Hormones – a.k.a Plant Growth Regulators Plants do not move actively from place to place. They do not posses muscle or nervous systems. But they.
Chapter 39 Plant Response to Internal and External Signals © 2011 Pearson Education, Inc.
Plant Responses to Internal & External Signals
39.1. Organisms receive signals and respond to them in ways that enhance survival and reproductive success Organisms must have appropriate receptors to.
Concept 39.2: Plant hormones help coordinate growth, development, and responses to stimuli Plant hormones are chemical signals that modify or control one.
Principles of Biology BIOL 100C: Introductory Biology III Plant Hormones & Plant Defenses Dr. P. Narguizian Fall 2012.
Response to Signals in Plants Chapter 39. Signal Transduction Pathway 1. Receptors receive a stimulus and activate the secondary messengers 2. Secondary.
Chapter 39 Notes Plant Responses to Internal and External Signals.
AP Biology February 15, 2012  Objective  Describe the effects of various hormones on plant growth  Investigate how a plant respond to different stressors.
Charles and Francis Darwin (1880) There is an ‘influence’ which moves from the tip to the cells below. Plant Hormones.
Lecture #17 Date _______ n Chapter 39 ~ Plant Responses to Internal and External Signals.
PLANT HORMONES. All are produced in specific parts of the plant – eg shoot tip All are produced in specific parts of the plant – eg shoot tip.
13.6 Control of Plant Growth and Development Pages
Lecture #17 Date _______ n Chapter 39 ~ Plant Responses to Internal and External Signals.
Plant Hormones Controls of growth,development and movement.
Plant Hormones.
Tropism movement in response to a stimulus plants can move … 1. toward a stimulus (a positive tropism) OR 2. away from a stimulus (a negative tropism)
Cellular Communication In Plants
Plant Hormones Auxin Promotes plant growth
Plants.
Plant Responses to Internal and External Signals
Plant Control Systems It’s a Hormonal Thing!.
Regulating Growth Plant Hormones
Chapter 39 Plant Response to Internal and External Signals
Plant Responses to Stimuli
Plant Hormones and Responses
Chapter 39: Plant Responses to Internal and External Signals
Plant Hormones
Catalyst Which tissues are responsible for photosynthesis?
Plant Hormones and Responses
Plant responses to internal and external signals
Plant Hormones.
Chapter 39 ~ Plant Responses to Internal and External Signals
Plant Responses to Internal and External Signals
Plant Growth and Development
Figure 31.1 Figure 31.1 How do plants detect light?
Plant Responses/Behavior
AP Biology Chapter 39 Plant Responses to Internal and External Signals.
The Chapter 31 Homework is due on Monday, April 1st
Plant tropisms and hormonal control
© 2017 Pearson Education, Inc.
Chapter 39. Plant Response.
Presentation transcript:

Plant Responses to Internal and External Signals Chapter 39 Plant Responses to Internal and External Signals

Plant hormones help coordinate growth, development, and responses to stimuli Plant hormones are chemical signals that modify or control one or more specific physiological processes within a plant © 2011 Pearson Education, Inc.

The Discovery of Plant Hormones Any response resulting in curvature of organs toward or away from a stimulus is called a tropism In the late 1800s, Charles Darwin and his son Francis conducted experiments on phototropism, a plant’s response to light They observed that a grass seedling could bend toward light only if the tip of the coleoptile was present © 2011 Pearson Education, Inc.

A Survey of Plant Hormones Plant hormones are produced in very low concentration, but a minute amount can greatly affect growth and development of a plant organ In general, hormones control plant growth and development by affecting the division, elongation, and differentiation of cells © 2011 Pearson Education, Inc.

Auxin The term auxin refers to any chemical that promotes elongation of coleoptiles Indoleacetic acid (IAA) is a common auxin in plants; in this lecture the term auxin refers specifically to IAA Auxin is produced in shoot tips and is transported down the stem Auxin transporter proteins move the hormone from the basal end of one cell into the apical end of the neighboring cell © 2011 Pearson Education, Inc.

The Role of Auxin in Cell Elongation According to the acid growth hypothesis, auxin stimulates proton pumps in the plasma membrane The proton pumps lower the pH in the cell wall, activating expansins, enzymes that loosen the wall’s fabric With the cellulose loosened, the cell can elongate © 2011 Pearson Education, Inc.

Cross-linking polysaccharides Cell wall–loosening enzymes Expansin Figure 39.8 Cross-linking polysaccharides Cell wall–loosening enzymes Expansin CELL WALL Cellulose microfibril H2O H Plasma membrane H H Cell wall H H H H H Figure 39.8 Cell elongation in response to auxin: the acid growth hypothesis. Nucleus Plasma membrane Cytoplasm ATP H Vacuole CYTOPLASM

Cytokinins Cytokinins are so named because they stimulate cytokinesis (cell division) © 2011 Pearson Education, Inc.

Control of Cell Division and Differentiation Cytokinins are produced in actively growing tissues such as roots, embryos, and fruits Cytokinins work together with auxin to control cell division and differentiation © 2011 Pearson Education, Inc.

“Stump” after removal of apical bud Figure 39.9 Lateral branches “Stump” after removal of apical bud (b) Apical bud removed Figure 39.9 Apical dominance. Axillary buds (a) Apical bud intact (not shown in photo) (c) Auxin added to decapitated stem

Anti-Aging Effects Cytokinins slow the aging of some plant organs by inhibiting protein breakdown, stimulating RNA and protein synthesis, and mobilizing nutrients from surrounding tissues © 2011 Pearson Education, Inc.

Gibberellins are produced in young roots and leaves Stem Elongation Gibberellins are produced in young roots and leaves Gibberellins stimulate growth of leaves and stems In stems, they stimulate cell elongation and cell division © 2011 Pearson Education, Inc.

Grapes from control vine (left) and gibberellin-treated vine (right) Figure 39.10 (b) Grapes from control vine (left) and gibberellin-treated vine (right) Figure 39.10 Effects of gibberellins on stem elongation and fruit growth. (a) Rosette form (left) and gibberellin-induced bolting (right)

Fruit Growth In many plants, both auxin and gibberellins must be present for fruit to develop Gibberellins are used in spraying of Thompson seedless grapes © 2011 Pearson Education, Inc.

Abscisic Acid Abscisic acid (ABA) slows growth Two of the many effects of ABA Seed dormancy Drought tolerance © 2011 Pearson Education, Inc.

Seed Dormancy Seed dormancy ensures that the seed will germinate only in optimal conditions In some seeds, dormancy is broken when ABA is removed by heavy rain, light, or prolonged cold Precocious (early) germination can be caused by inactive or low levels of ABA © 2011 Pearson Education, Inc.

Drought Tolerance ABA is the primary internal signal that enables plants to withstand drought ABA accumulation causes stomata to close rapidly © 2011 Pearson Education, Inc.

The Triple Response to Mechanical Stress Ethylene induces the triple response, which allows a growing shoot to avoid obstacles The triple response consists of a slowing of stem elongation, a thickening of the stem, and horizontal growth © 2011 Pearson Education, Inc.

Fruit Ripening A burst of ethylene production in a fruit triggers the ripening process Ethylene triggers ripening, and ripening triggers release of more ethylene Fruit producers can control ripening by picking green fruit and controlling ethylene levels © 2011 Pearson Education, Inc.

Bozeman: Plant Hormones (7:53)