Cell membrane structure and function

Slides:



Advertisements
Similar presentations
CP BIO: Ch. 7 The Cell Membrane
Advertisements

Chapter 5: Biological Membranes
Cell Theory O Three Parts O All living things are made up of one or more cells O Cells are the basic units of structure and function O All cells arise.
Movement through the channel
Chapter 10 Functions of Cell Membranes. Cell Membrane Functions 1.Selectively choose what’s inside or outside the cell…creating a concentration gradient.
Chapter 5 - Cell Membrane Structure and Function 5.1 How is the structure of a membrane related to its function? 5.2 How do substances move across membranes?
Cell Membranes Structure and Function. As a review, fill in the blanks: Molecules are made up of ___. Sugars link together to make ___. Amino acids link.
Cell Membrane Structure & Function
The Plasma Membrane Fluid Dynamics and Cell Transportation.
Chapter 5 Cell Membrane. Plasma Membrane --the fluid mosaic model (S.J Singer) -- semi-permeable --fluid portion is a double layer of phospholipids, called.
CH. 5 MEMBRANE STRUCTURE AND FUNCTION
Chapter 4 Cells and their Environment
 1972 Singer and Nicolson developed the fluid mosaic model Main Function: Isolate the cell’s contents from the external environment and regulate what.
Copyright © 2011 Pearson Education Inc.Biology: Life on Earth, 9e Chapter 5  Cell Membrane Structure and Function.
What do these have in common? HIV infection Transplanted organs Communication between neurons Drug addiction Cystic fibrosis hypercholesteremia.
Homeostasis and Cell Transport
The Cell Membrane BE ABLE TO: Identify the parts and its structure Importance in eukaryotic cells Describe its functions.
1 The Plasma Membrane The Plasma Membrane - Gateway to the Cell.
Membrane structure results in selective permeability A cell must exchange materials with its surroundings, a process controlled by the plasma membrane.
Copyright © 2009 Pearson Education, Inc.. Lectures by Gregory Ahearn University of North Florida Chapter 3 Cell Membrane Structure and Function.
Chapter 4 Cell Membranes. Chapter 4 2 Cell Membrane Functions 1.Selectively choose what’s inside or outside the cell…creating a concentration gradient.
Copyright © 2009 Pearson Education, Inc.. Lectures by Gregory Ahearn University of North Florida Chapter 3 Cell Membrane Structure and Function.
Chapter 5 – Plasma Membrane Structure and Function.
Chapter 3 Cells: The Living Units Intro and Membrane.
Biological Membranes Chapter 5.
Homeostasis and Cell Transport Chapter 5 Table of Contents Section 1 Passive Transport Section 2 Active Transport.
Discussion Questions – in your notes 1. Movement across a cell membrane without the input of energy is described by what term? 2. A substance moves from.
Facilitated Diffusion Active Transport
Biology: Life on Earth Lecture for Chapter 5
Biology 102 Lectures 6 & 7: Biological Membranes.
Cell Membrane. Hydrophilic Hydrophobic Hydrophilic.
Chapter 3 Cells and Tissues Cell Physiology. Membrane Transport  Membrane Transport  Movement of substances into and out of the cell  Selective Permeability.
Regents Biology Cell Membranes & Movement Across Them.
Chapter 7-3: Cell Transport. Explain what is meant by the term selective permeability. Compare and contrast passive and active transport. Daily Objectives.
 Main component is the PHOSPHOLIPID Fatty acids Hydrophilic head -polar Hydrophobic tail -nonpolar Phosphate group.
Bell Work! 1. Why are vacuoles important to PLANTS?
3.6 How Do Diffusion And Osmosis Affect Transport Across The Plasma Membrane? Simple diffusion through the phospholipid bilayer Fig. 3-7a Simple diffusion.
Cell Membrane Structure and Function
Chapter 4 –Section 4.2 (pgs. 56 – 57) Chapter 5 (5.6, 5.7 and pgs )
AP Bio Chapter 5.
Cell Membranes & Movement Across Them
CH 5:The Cell Membrane Movement and Mechanics
Control of Material Movement
Active and Passive Transport
Cell Membrane Structure and Function
Fig. 7-1 Figure 7.1 How do cell membrane proteins help regulate chemical traffic?
Cell Membranes.
Membrane Structure and Function
Homeostasis and Cell Transport
Diffusion.
Homeostasis and Transport
Membrane Structure and Function
Chapter 7-3: Cell Transport
Transport of Substances Across a Cell Membrane
Homeostasis and Cell Transport
Chapter 4 Cell Membrane Structure and Function
Chapter 7-3: Cell Transport
Inquiry into Life Twelfth Edition
Nitrogen-containing group
What Does The Plasma Membrane Do?
Chapter 7.3 Cell Membrane and Cell Transport
Structure and Function of the cell membrane
What Does The Plasma Membrane Do?
The Cell Membrane.
Chapter 5 Table of Contents Section 1 Passive Transport
Cellular Transport.
Chapter 5 Homeostasis and Cell Transport
Cell Membrane Structure and Function
Cell Membrane Structure and Function
Movement across the Cell Membrane
Presentation transcript:

Cell membrane structure and function Teresa Audesirk • Gerald Audesirk • Bruce E. Byers Chapter 5 Cell membrane structure and function Copyright © 2008 Pearson Prentice Hall, Inc.

A brown hermit spider and a rattlesnake ready to attack. Introducción al capítulo 5 Una serpiente de cascabel lista para atacar.

Plasma membrane FIGURA 5-1 La membrana plasmática La membrana plasmática es una capa doble de fosfolípidos que forman una matriz fluida en la que están incrustadas diversas proteínas (en azul). Muchas de éstas tienen carbohidratos unidos para formar glucoproteínas. Aquí se ilustran tres de los cinco tipos principales de proteínas de la membrana: de reconocimiento, receptoras y de transporte. Plasma membrane

Proteins Protein categories according to their function: Receptor proteins Recognition proteins Enzymes Attachment proteins Transport proteins

Receptor proteins Recognition proteins They trigger a sequence of chemical reactions with specific molecules. Example: hormones. Recognition proteins They select the different molecules of substances and tag them.

Receptor protein activation (exterior) FIGURA 5-5 Activación de los receptores (interior) reactions Receptor protein activation

Enzymes Attachment proteins They catalyze chemical reactions that synthesize or break up biological molecules. Attachment proteins They bond the plasma membrane with the cytoskeleton filaments.

Transport proteins There are 2 kinds of transport proteins: channel proteins and carrier proteins. They regulate the movement of hydrophilic molecules.

How do substances move across membranes? Molecules in fluids move in response to gradients. The transport through membranes could be active or passive. Passive tranport do not requiere energy, and it includes: simple difusion, facilitated difusion, and osmosis. Active transport requires energy to move molecules against concentration gradient. It includes: endocytosis and exocytosis.

Dye in water diffusion gota de colorante molécula de agua Las moléculas de colorante se difunden en el agua; las moléculas de agua se difunden en el colorante Las moléculas de agua y de colorante están dispersas de manera uniforme Una gota de colorante se coloca en agua gota de colorante molécula de agua FIGURA 5-6 (parte 3) Difusión de un colorante en agua

Passive transport: Diffusion of substances through cell membranes occur down concentration gradients. The phospholipids and the proteic channels of the plasma membrane control which ions or molecules can cross, but do not control the movement direction. Active transport: Substances travel through the cell membrane against the concentration gradient.

Kinds of passive transport Simple diffusion includes lipid-soluble molecules(vitamins A y E), dissolved gasses and water.

Gases like CO2 and Oxygen can pass through the phospholipidic bilayer. FIGURA 5-7a Difusión a través de la membrana plasmática a) Difusión simple: gases como el oxígeno y el dióxido de carbono y moléculas solubles en lípidos pueden difundirse directamente a través de los fosfolípidos. Gases like CO2 and Oxygen can pass through the phospholipidic bilayer.

Kinds of passive transport Facilitated diffusion includes water, ions, and water soluble molecules (like sugars or AA) via channel or carrier proteins.

FIGURA 5-7b (parte 2) Difusión a través de la membrana plasmática b) Difusión facilitada a través de un canal proteico: los canales (poros) permiten el paso a algunas moléculas solubles en agua, principalmente iones, que no pueden difundirse directamente a través de la bicapa. This protein pores let some water soluble molecules, and mainly ions pass through the membrane.

(fluido extracelular) c) Difusión facilitada a través de un portador aminoácidos azúcares proteínas pequeñas (fluido extracelular) Proteína portadora con sitio de unión para la molécula (Citosol) proteína portadora La molécula entra en el sitio de unión. La proteína portadora cambia de forma, transportando la molécula al otro lado de la membrana. La proteína portadora recupera su forma original. FIGURA 5-7c (parte 4) Difusión a través de la membrana plasmática c) Difusión facilitada a través de una proteína portadora. AA and sugars getting inside the cell by facilitated diffusion.

Kinds of passive transport Osmosis includes water from regions of higher concentration to regions of lower concentration.

Isotonic solution There is no water flow. FIGURA 5-8 Solución isotónica Isotonic solution

[ ] comparison Isotonic solutions have the same [] . Hypertonic solutions have more [] . Water flows inside hypertonic solutions. Hypotonic solutions have less [] .

Hypotonic solution outside, hypertonic solution inside the bag. The bag swells and bursts. FIGURA 5-9 Solución hipotónica

Equal movment of water into and out of cells. a) Isotonic solution Figura 5-10a Efectos de la ósmosis a) Si los glóbulos se sumergen en una solución isotónica de sal, no habrá movimiento neto de agua a través de la membrana plasmática. Los glóbulos rojos conservarán su forma característica de discos con depresión en el centro. Equal movment of water into and out of cells. Osmosis effects: Red blood cells in salty water.

Water moves out of the cells. Figura 5-10b Efectos de la ósmosis b) Una solución hipertónica, con mayor cantidad de sal que la que hay en las células, hace que salga agua de estas últimas, provocando que se encojan y arruguen. b) Hypertonic solution Water moves out of the cells.

Water moves inside the cells. c) Hypotonic solution Figura 5-10c Efectos de la ósmosis c) Una solución hipotónica, con menos sal que la que hay en las células, hace que entre agua a éstas, las cuales, por consiguiente, se hinchan y corren el riesgo de reventar. Water moves inside the cells.

Kinds of passive transport Osmosis explains why sweet water protists have contractile vacuoles. Water filters continuously because the cytosol is hypertonic in relation to the sweet water they live in. The salts are pumped to the vacuoles and that makes them hypertonic in relation to the cytosol. Water, by osmosis fills the vacuole and then its expelled by contractions.

Water gets inside the protist by osmosis Water gets inside the protist by osmosis. Inside the cell, water is trapped by colector conducts and drained to the central vacuole. When the deposit si full, it contracts and water is expelled by a pore in the plasma membrane. Figura 4-16 (parte 1) Vacuolas contráctiles Muchos protistas de agua dulce contienen vacuolas contráctiles. a) El agua entra de forma continua en la célula por ósmosis. En la célula, el agua es captada por los conductos colectores y drenada hacia el depósito central de la vacuola. b) Una vez lleno, el depósito se contrae y expulsa el agua a través de un poro en la membrana plasmática.

Active transport In active transport, proteins from the plasma membrane cross using ATP. Proteins that help in active transport (transport proteins) usually have 2 active spots, one is attached to the molecule and the otherone is attached to an ATP molecule. They are called pumps.

FIGURA 5-12 Transporte activo El transporte activo utiliza energía celular para pasar moléculas de un lado al otro de la membrana plasmática, en contra de un gradiente de concentración. Una proteína de transporte (azul) tiene un sitio de unión para ATP y un sitio de reconocimiento para las moléculas que van a ser transportadas, en este caso, iones calcio (Ca2+). Observa que cuando el ATP dona su energía, pierde su tercer grupo fosfato y se convierte en ADP + P. Active transport works against concentration gradient. The transport protein (blue) has an ATP binding site and a recognition site for the molecules that need to be transported. Example: (Ca2+). When ATP donates its energy, it looses its third phosphate group and becomes ADP + P.

Endocytosis Cells can get fluids or particles from its environment by endocytosis. Kinds of endocytosis: Pinocytosis Receptor-mediated endocytosis Phagocytosis

Pinocytosis FIGURA 5-13a Pinocitosis Los números encerrados en un círculo corresponden tanto al diagrama como a la micrografía de electrones. Pinocytosis

Pinocytosis FIGURA 5-13b Pinocitosis Los números encerrados en un círculo corresponden tanto al diagrama como a la micrografía de electrones. Pinocytosis

FIGURA 5-14 (parte 1) Endocitosis mediada por receptores Los números encerrados en un círculo corresponden tanto al diagrama como a la micrografía de electrones. 1 There are receptor proteins for specific molecules located in coated pits. 2 2 In the cytosol there is a vesicle released (“recovered vesicle”) that contains attached molecules. 3 The coated pit region encloses the molecules that are attached to the receptors. 4 The receptors are attached to the molecules in the membrane and they get inside the cell.

FIGURA 5-14 (parte 2) Endocitosis mediada por receptores Los números encerrados en un círculo corresponden tanto al diagrama como a la micrografía de electrones.

FIGURA 5-15a Fagocitosis

An Amoeba (a sweet water protist) eats a Paramecium by phagocytosis. FIGURA 5-15b Fagocitosis Phagocytosis

A white blood cell ´eats´ bacteria by phagocytosis. FIGURA 5-15c Fagocitosis Phagocytosis

FIGURA 5-16 Exocitosis La exocitosis es, funcionalmente, el proceso inverso de la endocitosis. Exocytosis is the opposite process to endocytosis. In exocytosis the vesicle expells the material out of the cell.

Cell size and shape The exchange of fluids affects the size and shape of the cell. When spherical cells grow, their internal regions get farther from the plasma membrane. A very big cell has a relatively smaller area to exchange nutrients than a small cell. Example: skin of a teenage boy and the skin of an obese man.

Volume and surface area relations. FIGURA 5-17 Relaciones de área de superficie y volumen

How do specialized junctions allow cells to connect and communicate? Desmosomes are tight unions that join certain animal cells. The tight unions make cell attachments leakprof. (leaky skin or leaky bladder) Gap-junctions are cell to cell channels that connect their interior. They accept hormone traffic. Plasmodesmata are openings in the walls of adjacent plant cells, lined with plasma membrane and filled with cytosol.

Desmosome Thin intestine Cells that cover the small intestine microvilli Figura 5-18a (parte 1) Estructuras de unión de las células a) Las células que revisten el intestino delgado están unidas firmemente unas a otras mediante desmosomas. Filamentos proteicos unidos a la superficie interior de cada desmosoma se extienden hacia el citosol y se sujetan a otros filamentos dentro de la célula, lo que fortalece la conexión entre las células. .

Proteic filaments in the cytosol Proteic fibers the connect cells Small intestine cells microvilli Plasma membrane desmosome Figura 5-18a (parte 2) Estructuras de unión de las células a) Las células que revisten el intestino delgado están unidas firmemente unas a otras mediante desmosomas. Filamentos proteicos unidos a la superficie interior de cada desmosoma se extienden hacia el citosol y se sujetan a otros filamentos dentro de la célula, lo que fortalece la conexión entre las células. Proteic filaments in the cytosol Proteic fibers the connect cells

Urinary bladder Urinary bladder cells Figura 5-18b (parte 1) Estructuras de unión de las células b) Las uniones estrechas evitan las fugas entre células, como sucede en las células de la vejiga urinaria.

FIGURA 5-18b (parte 2) Estructuras de unión de las células Células que revisten la vejiga FIGURA 5-18b (parte 2) Estructuras de unión de las células membranas plasmáticas (corte) Figura 5-18b (parte 2) Estructuras de unión de las células b) Las uniones estrechas evitan las fugas entre células, como sucede en las células de la vejiga urinaria. Las uniones estrechas, formadas por fibras proteicas, sellan las membranas de las células

FIGURA 5-19 Estructuras de comunicación celular a) Las uniones en hendidura o abiertas, como las que hay entre las células del hígado, contienen canales intercelulares que conectan el citosol de células adyacentes. b) Las células vegetales se interconectan mediante plasmodesmos, que forman puentes citosólicos a través de las paredes de células adyacentes.

Caribous´ technique not to freeze Caribou legs have cells with a plasma membrane adapted to very cold conditions. Their plasma membranes are more fluid to avoid freezing.They also have unsaturated fats.

Figura 5-20 Caribúes pastando en la congelada tundra de Alaska La composición lipídica de las membranas celulares en las patas del caribú varía según la distancia al tronco del animal. Los fosfolípidos insaturados predominan en la parte inferior de la pata; en la parte superior hay fosfolípidos más saturados. Alaskan caribous

Vicious venoms Spider and snake venoms have certain enzymes that beakdown phospholipids and destroy cell membranes. When cell membranes are destroyed, cells are destroyed. When cells die, the tissue around the bite is destroyed.

FIGURA 5-21a Las fosfolipasas en los venenos destruyen las células a) Picadura de una araña ermitaña café en el antebrazo de una persona. Hermit spider bite.

FIGURA 5-21b Las fosfolipasas en los venenos destruyen las células b) Picadura de una serpiente de cascabel en un antebrazo. En ambos casos se observa la extensa destrucción de tejido provocada por las fosfolipasas. Rattlesnake bite.